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Abstract
The Middle East frontal sand and dust storms (SDS) occur in non-summer seasons, and represent an important phenomenon 
of this region’s climate. Among the mentioned type, spring SDS are the most common. Trend analysis was used in the cur-
rent study to investigate the spatial-temporal variability of springtime dust events in the Middle East using synoptic station 
observation from 2011 to 2022. The plausible changes in some controlling factors of dust activity at selected important dust 
sources in the Middle East were also studied during this time period. Our results showed a statistically significant spike in 
springtime dust events across the Middle East, particularly in May 2022. To evaluate the relative importance of controlling 
factors, the applied feature of importance analysis using random forest (RF) showed the higher relative importance of top-
soil layer wetness, surface soil temperature, and surface wind speed in dust activity over the Middle East between 2011 and 
2022. Long-term trend analysis of topsoil moisture and temperature, using the Mann-Kendall trend test, showed a decrease 
in soil moisture and an increase in soil temperature in some selected important dust sources in the Middle East. Moreover, 
our predictions using ARIMA models showed a high tendency to dust activities in selected major dust origins (domain 2 and 
domain 5) with a statistically significant increase (p-value < 0.05) between 2023 and 2029. Observed spatial and temporal 
changes within SDS hotspots can act as the first step to build up for the first time an SDS precise intensity scale, as well as 
establishing an SDS early warning system in future.

Keywords Sand and dust storms · Drought · Soil moisture · Soil temperature · Mann-Kendall trend test · ARIMA model · 
the Middle East

Introduction

Arid and semi-arid areas, including the Sahara, the Middle 
East, and Mongolia, are the origin of sand and dust storms 
(SDS). More than 200–5000 million tons of mineral dust are 
estimated to be released annually by dust storms in Saharan 
Africa, the Middle East, and Asia (Rezazadeh et al. 2013). 
Middle East hosts the major SDS sources (hotspots), which 
are located in the deserts of the Arabian Peninsula, Tigris-
Euphrates alluvial plains (Iran–Iraq border, Iraq, and eastern 

Syria), and southeastern Iran (Hossein Hamzeh et al. 2021; 
Middleton et al. 2021). The conducted studies on the fre-
quency and distribution of Middle Eastern SDS introduced 
the Arabian Peninsula, one of the main dust hotspots in this 
area, where realizing a vast amount of particles can signifi-
cantly deteriorate the air quality in both local and regional 
scales (Fattahi Masrour and Rezazadeh 2022).

SDS with horizontal visibility below 1000 m is one of 
the important natural hazards which can seriously impact 
the earth’s system, human health, and economy, specifically 
in West Asia, where their frequency and intensity vary over 
time and require more attention (Goudie and Middleton 
2006; Halos and Mahdi 2021). They are characterized by 
strong winds and blowing particles over arid, semi-arid, and 
hyper-arid regions (Yin et al. 2021). Blowing desert dust 
endangers human society during its entrainment, short-range 
and/or long-range transport, and deposition (Middleton 
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2017). Dust can negatively influence human health, wind 
and solar power production, oil and gas industry, transport 
industry, agriculture, and changes in the albedo of ice with 
resulting consequences on water availability and runoff (Al-
Hemoud et al. 2019; Alshawaf et al. 2020; Hu et al. 2020; 
Khaniabadi et al. 2017; Mahmoodirad et al. 2019; Middle-
ton et al. 2019; Papadopoulou et al. 2019; Soleimani et al. 
2020). Besides, desert dust can ultimately cause flight delay 
or cancelation, rerouting aircrafts, and mechanical problems 
like corrosion of aircraft engines (Basha et al. 2019).

Due to the severe and significant impacts of sand and 
dust storms (SDSs), numerous studies have focused on 
accurately identifying and predicting SDS source areas 
to enhance disaster preparedness and damage prevention 
(Boroughani et al. 2021; Darvishi Boloorani et al. 2022; 
Gholami et al. 2021). SDS outbreaks depend not only on 
meteorological factors like wind speed, precipitation, and 
air temperature but also on terrestrial factors such as veg-
etation cover, snow cover, and soil characteristics (e.g., 
soil moisture, soil temperature) (Jiao et al. 2021; Papi et al. 
2022). However, the integration of multiple remote sens-
ing (RS) and meteorological data, which possess different 
spatial and temporal resolutions, and their application in 
SDS source prediction require further resolution (Rayegani 
et al. 2020). In this context, machine learning (ML) meth-
ods with their remarkable data integration capabilities are 
extensively employed in various data science fields, encom-
passing identification, classification, prediction, regression, 
and clustering (Alshammari et  al. 2022; Holloway and 
Mengersen 2018; Liakos et al. 2018).

In recent times, ML methods have witnessed extensive 
utilization in SDS source prediction and susceptibility map-
ping. Lary et al. (2016) were among the first to demonstrate 
the promising potential of machine learning algorithms 

(MLAs) in SDS source classification and identification 
(Lary et  al. 2016). Subsequently, Nabavi et  al. (2018) 
introduced five MLAs, including multilinear regression 
(MLR), random forest (RF), multivariate adaptive regres-
sion splines (MARS), support vector machine (SVM), and 
artificial neural network (ANN), for predicting aerosol opti-
cal depth (AOD) in West Asia (Nabavi et al. 2018). Gholami 
et al. (2020a) applied six MLAs, namely, eXtreme Gradient 
Boosting (XGBoost), Cubist, boosting multivariate adap-
tive regression splines (BMARS), adaptive network-based 
fuzzy inference system (ANFIS), Cforest, and Elasticnet, 
to explore land susceptibility to dust emissions in south-
eastern Iran (Gholami et al. 2020a). Additionally, Gholami 
et al. (2021) introduced an innovative integrated ML-based 
approach for generating spatial maps of dust sources and 
assessing the interpretability of these maps over Central Asia 
(Gholami et al. 2021). While ML-based methods, including 
deep learning (DP)-based techniques, have found increasing 
applications in SDS source prediction, only a few studies 
have specifically focused on predicting SDS sources at the 
event scale(Jiao et al. 2021).

Due to the fact that the Middle East has recently hosted 
major dust events (Al-Dousari et al. 2022; Doronzo et al. 
2016), it is important to accurately analyze the spatial and 
temporal distribution of various types of dust events along 
with plausible changes in the dust sources’ characteristics, 
which can ultimately impact the frequency and intensity of 
dust events. Additionally, the latest unprecedented levels of 
dust storms in the Middle East during the springtime (2022) 
can highlight the importance of further studies to dive deep 
into this matter (Fig. 1). Figure 1 shows captured natural-
colour images with the Moderate Resolution Imaging Spec-
troradiometer (MODIS) instruments on NASA’s Terra and 
Aqua satellites in late April 2022 and May 2022 over the 

Fig. 1  True colour image from the Aqua-MODIS sensor (https:// world view. earth data. nasa. gov) on A 24th April 2022 and B 5th May 2022, 
focusing on the Middle East

https://worldview.earthdata.nasa.gov
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Middle East. A thick dust cloud blanketed regions in eastern 
Syria, Iraq, Saudi Arabia, Kuwait, and Iran. In this period, 
hundreds of people were admitted to hospitals because of 
respiratory problems. Also, flights were grounded, and pub-
lic buildings, schools, and offices were closed nationwide, 
and several governors declared state of emergency (Francis 
et al. 2022). Being continuously exposed to a thick dust 
blanket during springtime 2022 is quite alarming and can 
deeply impact societies across the region, from Syria to Iran 
(https:// world view. earth data. nasa. gov).

It is worth mentioning that synoptic scale dust storms in 
the Middle East can be divided into two types: summer Sha-
mal and frontal dust storms. Wilkerson (1991) divided fron-
tal dust storms into two categories, postfrontal and prefron-
tal, which can occur at different times and places depending 
on the location of the front and the cyclone path. During 
prefrontal dust storms, the polar jet (PJ) behind and the sub-
tropical jet (STJ) ahead of the front merge into a single jet 
maximum, resulting in a strong southerly to south-westerly 
near-surface wind. The large pressure gradient behind cold 
fronts causes postfrontal dust storms, also known as winter 
Shamal, which are directly related to eastward moving mid-
latitude disturbances (Hamidi 2019; Wilkerson 1991).

The summer Shamal dust storms have received a great 
deal of attention; however, the frontal dust storms, which 
occur in non-summer seasons and are more intense than 
their Shamal counterpart, require more investigation (Ghola-
mzade Ledari et  al. 2020; Hamidi 2019; Hamzeh et  al. 
2021a; Niroomand et al. 2020; Vishkaee et al. 2011). Also, 
in recent years, this region has experienced some abnormali-
ties in dust storm activities, especially during springtime, 
and this trend is changing into the main socio-environmental 
problem in the area (Khoshakhlagh et al. 2012; Mashat et al. 
2020). Therefore, the aim of the current study is to delin-
eate the spatial-temporal distribution of different types of 
springtime dust events for 12 years from 2011 to 2022 in 
the Middle East. Also, to detect the possible changes in the 
soil properties and meteorological parameters over major 
dust sources between 2011 and 2022. Besides, the dust loads 
from selected dust origins were predicted by ARIMA mod-
els between 2023 and 2029.

Material and methods

Study area

The study area is geographically between 10–45°N and 
20–70°E, which covers 13 countries (Bahrain, Egypt, Iraq, 
Iran, Jordon, Kuwait, Lebanon, Oman, Qatar, Syria, Saudi 
Arabia, Turkey, and the United Arab Emirates) (Fig. 2). 
The arid climate, rough topography, low annual precipita-
tion, scarcity of vegetation, and extensive sandy and clay 

areas all influence dust activity in the area. In this area, dust 
storms occur mainly under the influence of northern winds, 
particularly during spring, summer, and late winter. Five 
important dust sources which mainly influence non-sum-
mer season dust storms in the Middle East were selected to 
study the plausible changes in meteorological parameters 
and soil characteristics, including domain 1 (D1), domain 
2 (D2), domain 3 (D3), domain 4 (D4), and domain 5 (D5) 
(Fig. 2). D1 and D5 cover the Tigris and Euphrates alluvial 
plain dust sources in Iraq, local deserts, and dry wetlands 
in southwest Iran, Kuwait, and northern Saudi Arabia dust 
sources. D3 includes Syria, western Iraq, eastern Jordan, and 
northern Saudi Arabia dust sources. D2 and D4 contain the 
western, central, and eastern parts of Saudi Arabian active 
dust sources, respectively (Gholamzade Ledari et al. 2020; 
Ginoux et al. 2012; Hamidi 2019; Ledari et al. 2022).

Ground observations

The current study obtained ground-based hourly horizontal 
visibility data from Iowa Environmental Mesonet (https:// 
www. iasta te. edu/). The hourly horizontal visibility data 
obtained from Iowa Environmental Mesonet were used to 
identify and classify dust storms in the Middle East in 179 
meteorological stations between 2011 and 2022. The dust 
storm events were identified based on the synoptic codes pre-
sented by the World Meteorological Organisation (WMO) 
with horizontal visibility of fewer than 10 km. Accordingly, 
they are classified into three different categories: (1) severe 
dust storms with horizontal visibility ≤ 200 m, (2) moder-
ate dust storms with 200 m < horizontal visibility ≤ l km, 
and (3) mild dust storms with 1 km ≤ horizontal visibility 
(Hoffmann et al. 2008).

Satellite remote sensing products

To study the plausible changes of meteorological param-
eters and soil characteristics in more persistent dust sources, 
monthly databases (http:// giova nni. sci. gsfc. nasa. gov) of 
MERRA-2, GLDAS, FLDAS, and MODIS Terra were used 
to investigate 2-m temperature (spatial resolution of 0.5° 
× 0.625°), surface wind speed (spatial resolution of 0.5° × 
0.625°) total precipitation rate (spatial resolution of 0.25° × 
0.25°), soil moisture content and soil temperature at 0–10 
cm underground (spatial resolution of 0.1° × 0.1°), and 
NDVI (spatial resolution of 0.05° × 0.05°), between 2012 
and 2022, respectively. The spring season began in March 
and lasted until the end of May in the current study. Also, 
the monthly average aerosol optical depth (AOD) of 550 nm 
(deep blue, land-only) from MODIS Terra (spatial resolution 
of 1° × 1°) was used to study the changes in the dust activity 
over the Middle East. To investigate the dust activity over 

https://worldview.earthdata.nasa.gov
https://www.iastate.edu/
https://www.iastate.edu/
http://giovanni.sci.gsfc.nasa.gov
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selected major dust origins, the MODIS AOD is multiplied 
by an empirical coefficient of 1.8 g  m2 to present dust loads 
from the aforementioned areas (Hamidi et al. 2017).

Evaluating springtime dust storm events trending 
in the Middle East

Broadly, the study of chronologically measured data time 
series provides a valuable source of information about 

the underlying relationships among them and the ability 
to predict non-monitored periods. In this study, a trending 
analysis as a function of the type of dust storm (severe, 
moderate, or mild), which was identified based on the 
reduction in horizontal visibility, was performed to better 
interpret the events’ time series in the target study domain. 
For that, mean annual data were employed. Firstly, the tem-
poral 2011–2022 series was represented, and secondly, the 
best-fitting function type was selected among exponential, 

Fig. 2  The investigated domain in the current study. D1–D5 areas represent some selected important dust origins in the Middle East
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linear, logarithmic, polynomial, potential, and moving aver-
age functions. In this case, a polynomial function (second 
degree) was regarded to evaluate the time series trend. On 
the other hand, independent samples t-test was conducted 
to identify potential differences among mean annual values 
of the investigated years, considering p-values lower than 
0.05 statistically significant.

Feature selection based on random forest analysis

The feature importance (FI) analysis was carried out via 
random forest to evaluate the relative importance of con-
trolling factors of dust activity impacting dust loads in 
selected major Middle Eastern dust origins (Molla-Alizadeh-
Zavardehi et al. 2014). Random forest represents one of the 
most widely utilized machine learning methods due to its 
exceptional predictive performance, ability to mitigate over-
fitting, and inherent interpretability (Breiman 2001). The 
algorithm’s interpretability arises from its capacity to read-
ily determine the significance of each variable in making 
decisions within the tree, making it a straightforward task to 
quantify the contribution of each variable to the overall deci-
sion. This interpretability is facilitated by the straightforward 
process of determining the importance of each variable in 
the decision-making within the tree.

FI analysis was applied for NDVI_Terra, precipitation, 
soil temperature, soil wetness, surface wind speed, maxi-
mum 2-m temperature, minimum 2-m temperature, and 
mean 2-m temperature. RF helped in the selection of the 
most important predictors affecting dust activity based 
on a selection from 1 (highest importance) to zero (no 
importance).

Time series analysis of some controlling factors 
of dust activity in selected major Middle Eastern 
dust origins

To analyse the significance of trends in long-term changes 
in controlling factors, the Mann-Kendall test (“(wq)” pack-
age in R) was applied, using the “seaKen” functions, for the 
seasonal Mann–Kendall trend tests (Kendall 1949; Mann 
1945). Moreover, the Sen’s Slope estimator was also applied, 
from the same package (wq), to quantify the magnitude of 
changes (Shafiee et al., 2019, 2017; Silva Junior et al. 2018).

Autoregressive integrated moving average (ARIMA) 
to predict dust activity

Prediction models for the phenomenon of dust storms, based 
on past data, help identify the main factors contributing to 
their occurrence in a region and the importance of each 
factor. One of the most important prediction models is the 
ARIMA time series model, which forecasts the future state 

of a variable based on its current value. In this research, 
autoregressive integrated moving average (ARIMA) was 
applied to investigate and predict dust activity in selected 
major Middle Eastern dust origins between 2023 and 2029. 
The historical data we had spanned from 2011 to 2022, 
allowing us to utilize the ARIMA model to forecast dust 
loads for the time window from 2023 to 2029 (Dargahian 
and Doostkamian 2021; Ghosh et al. 2023; Mahendra et al. 
2023).

These models have the efficient capability of generating 
short-term forecasts. ARIMA model is expressed as follows:

where Yt, εt, ϕi, and θj are actual value, random error at t, and 
coefficients, respectively. p and q referred to autoregressive 
and moving average, respectively. Stationary is a necessary 
condition in ARIMA predicting model. If trend and hetero-
geneity is observed in the interest time series, they need 
to be removed and stabilize the variance before fitting the 
model (Box and Jenkins 1970).

Results

Figure 3 presents the monthly springtime time series of aver-
age aerosol optical depth 550 nm (deep blue, land-only) over 
the Middle East between 2011 and 2022. It shows a spike in 
dust activity in 2022, specifically in May (Fig. 3), following 
3-year average level activities. Moreover, the monthly aver-
aged anomalies of rainfall and soil moisture content (0–10 
cm underground) showed a reduction in March, April, and 
May during the same period. The anomalies of soil moisture 
content and rainfall had a strong positive correlation (R2 
= 0.85, p-value < 0.05). To dive deep into this matter, the 
current study investigated the changes in the ground-based 
horizontal visibility caused by the detected spike in dust 
activities along with the plausible changes in the control-
ling factors of sand and dust emissions in the Middle East 
between 2011 and 2022.

Long‑term spatiotemporal and trend variability 
of dust

Table 1 presents the total frequency of three dust storm cat-
egories in the Middle East from 2011 to 2022. Over the past 
12 springs, 503, 1937, and 2440 dust events were catego-
rized as severe (horizontal visibility ≤ 200 m), moderated 
(200 m < horizontal visibility ≤ 1 km), and mild dust storms 
(horizontal visibility ≤ 1 km), respectively. Also, 20,787 
days, expressed as the total sum of days in the study area, 
showed events of horizontal visibility below 10 km (blow-
ing dust, see Table 1). The highest number of springtime 

Yt = �
0
+ �

1
Yt−1 + �

2
Yt−2 +⋯ + �pYt−p + �t − �

1
�t−2 −⋯ − �q�t−q
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severe, moderate, and mild dust storms were recorded in 
2022, 2012, and 2012, respectively. In contrast, the lowest 
number of severe, moderate, and mild dust events were in 
2019, 2021, and 2016, respectively (Table 1). In our results, 
different dust events had a reduction trend in the studied 
meteorological stations after 2012, plateauing for 3 years 
until 2022. However, in 2022, their occurrences suddenly 
spiked again. According to our results, intensive severe dust 
storms were mainly reported in Saudi Arabia, Iran, Iraq, 
Kuwait, Jordan, and Egypt, with horizontal visibility below 
50 m from 2011 to 2022. Among these countries, the most 
intense severe events were observed in Saudi Arabia, where 
the horizontal visibility was repeatedly almost zero.

Table 2 shows the monthly distribution of different dust 
storm events recorded in the meteorological stations dur-
ing the studied time frame. Severe, moderate, and mild dust 
events had their highest frequency in May 2022, March 
2012, and May 2022, with values of 59, 178, and 225 
days, respectively (Table 2). The frequency of all types of 
dust events experienced a notable increase in May 2022 in 
Middle Eastern countries. The skies of many cities turned 
orange, the air quality degraded, and visibility dropped to a 
few hundred meters (https:// earth obser vatory. nasa. gov/ topic/ 
natur al- event).

Beside the recorded increase in the frequency of all 
springtime dust events, the annual mean of the number of 
dust events, which could be associated with poor air quality, 
experienced a statistically significant increase over time. 
The annual mean of the number of springtime severe, mod-
erate, and mild dust events had a statistically significant 
increase over time with R2 = 0.75 (p-value < 0.05), 0.74 
(p-value < 0.05), and 0.72 (p-value < 0.05), respectively, 
during the study period.

Figure 4 shows the observed statistically significant 
differences between the annual mean of the number the 
different springtime dust events from 2011 to 2022. Our 
results also revealed that the annual mean number of the 
springtime dust events experienced statistically significant 
changes between these 12 years (Fig. 4; Table 2). Com-
pared to previous years, the number of different dust events 
was statistically increased in 2022. Substantial differences 
in 2022 (increasing) were seen in the number of mild and 
blowing dust events compared to other years. The num-
ber of severe dust events also had a statistically significant 
increase in 2022 compared to 2013, 2014, 2016, 2017, 
2019, 2020, and 2021 (Fig. 4; Table 2).

Fig. 3  Monthly average aerosol 
optical depth 550 nm (deep 
blue, land-only) over the Middle 
East between 2011 and 2022

Table 1  The recorded total springtime SDS in three defined dust 
event categories and blowing dust frequency in the Middle Eastern 
meteorological stations during 2011–2022

Year Severe  
dust events 
(number)

Moderate  
dust events 
(number)

Mild  
dust events 
(number)

Blowing dust

2011 65 256 321 1444
2012 74 376 450 3037
2013 31 141 172 2148
2014 21 99 120 1385
2015 57 128 185 1854
2016 14 72 86 1324
2017 28 133 161 1607
2018 67 163 230 1800
2019 9 98 107 1199
2020 20 88 108 1195
2021 21 75 96 1268
2022 96 308 404 2526

https://earthobservatory.nasa.gov/topic/natural-event
https://earthobservatory.nasa.gov/topic/natural-event
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Table 2  The recorded monthly 
dust storms in four defined 
categories in the Middle Eastern 
meteorological stations during 
2011–2022

Severe dust storm Moderate dust storm
Year March April May Year March April May
2011 15 33 17 2011 73 108 75
2012 38 17 19 2012 178 81 117
2013 11 7 13 2013 34 65 42
2014 6 5 10 2014 36 27 36
2015 7 37 13 2015 24 65 39
2016 0 10 4 2016 21 24 27
2017 12 6 10 2017 57 37 39
2018 11 33 23 2018 46 61 56
2019 3 2 4 2019 42 32 24
2020 5 5 10 2020 31 26 31
2021 16 2 3 2021 44 17 14
2022 15 22 59 2022 66 76 166
Mild dust storm Blowing dust
Year March April May Year March April May
2011 88 141 92 2011 389 556 499
2012 216 98 136 2012 1168 810 1059
2013 45 72 55 2013 764 643 741
2014 42 32 46 2014 502 414 469
2015 31 102 52 2015 441 849 564
2016 21 34 31 2016 488 345 491
2017 69 43 49 2017 574 532 501
2018 57 94 79 2018 529 609 662
2019 45 34 28 2019 448 329 431
2020 36 31 41 2020 501 364 330
2021 60 19 17 2021 649 346 273
2022 81 98 225 2022 726 797 1003

Fig. 4  The observed statistically 
significant differences between 
the annual mean durations of 
springtime A severe dust events, 
B moderate dust events, C mild 
dust events, and D)blowing dust 
and time between 2011 and 
2022 in the Middle East



 Air Quality, Atmosphere & Health

Fig. 5  The spatial distribution of correlation strength between time and the SDS frequency of A severe SDS, B moderate SDS, C mild SDS, and 
D blowing dust with horizontal visibility of less than 10 km across the Middle East between 2013 and 2019

The Pearson correlation coefficients between different 
dust events and time were calculated (Fig. 5). Tables 3 
and 4 present the highest estimated positive and/or nega-
tive values with time between 2011 and 2022 in the Mid-
dle Eastern meteorological stations. The strongest posi-
tive correlation between time and severe, moderate, and 
mild dust storm events were in stations of King Khalid 
(Saudi Arabia, > + 0.70), Sabzevar (Iran, > + 0.80), and 

Sabzevar (Iran, > + 0.80), respectively (Table 3), while 
meteorological stations of Jask (Iran, < − 0.70) and Mar-
din (Turkey, < − 0.80) had the highest negative correla-
tion with time regarding severe, moderate, and mild dust 
storm events, respectively (Table 4). There are also some 
meteorological stations with correlation values near zero, 
showing neither positive nor negative correlation with 
time, which means there were no changes in the frequency 
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of dust events. According to our results, meteorological 
stations in Iran, Iraq, Syria, and Egypt recorded the biggest 
positive changes over time (2011–2022) in the frequency 
of springtime dust events, which could be due to their 
proximity to the important active dust sources (Fig. 5). 
Surprisingly, there was an increase in dust storm frequency 
at most Iranian stations, with the exception of some lim-
ited ones located in the northwest of Iran.

The relationship between dust activity 
and influencing parameters

In major selected Middle Eastern dust origins, RF analy-
sis showed the critical role of soil temperature (FI = 0.26), 
surface wind speed (FI = 0.37), soil moisture content (FI = 
0.29), soil moisture content (FI = 0.33), and soil moisture 

content (FI = 0.32), influencing the seasonal changes in dust 
loads from D1, D2, D3, D4, and D5, respectively, between 
2011 and 2022 (Fig. 6A).

Moreover, due to the essential controlling role of soil 
moisture content in the dust activity, RF analysis was per-
formed between soil moisture content at 0–10 cm under-
ground and other parameters with plausible influence on 
dust activity, including vegetation cover, 2-m temperature 
(maximum, minimum, and mean), total precipitation rate, 
soil temperature at 0–10 cm underground, and surface 
wind speed (Kim and Choi 2015; Munkhtsetseg et  al. 
2016; Nafarzadegan et al. 2021). RF analysis showed the 
critical role of soil temperature (FI = 0.31), surface wind 
speed (FI = 0.36), soil temperature (FI = 0.43), soil tem-
perature (FI = 0.35), and soil temperature (FI = 0.43), 
influencing the seasonal changes in soil moisture content 
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Fig. 6  The percentages of the included features in RF, A dust load (g/m2) and B soil moisture content (0–10 cm underground,  m3/m3) wetness 
during studied period (2011–2022) in major dust origins of Middle East
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from D1, D2, D3, D4, and D5, respectively, between 2011 
and 2022 (Fig. 6B).

These results indicate a higher tendency for dust activ-
ity in the Middle East by decreases in topsoil layer wetness 
and an increase in surface wind speed at 2-m and surface 
temperature between 2011 and 2022.

Long‑term spatiotemporal and trend variability 
of some controlling factors of dust activity 
in selected major Middle Eastern dust origins

The Mann- Kendall trend test was used to investigate the 
spatiotemporal changes of some factors affecting the dust 
emission potential in selected important dust sources in 
the Middle East (Baghbanan et al. 2020; Kang et al. 2016). 
The monthly average of NDVI, soil temperature at 0–10 
cm underground, soil moisture at 0–10 cm underground, 
total precipitation rate, 2-m temperature (maximum, mean, 
and minimum), and surface wind speed between 2011 and 
2022 were studied here (Figs. 7, 8). Figure 7 A shows 
minimum NDVI values, indicating the lack of vegetation 
or poor vegetation cover in the study area. The highest 
NDVI values are only observed in Turkey, the north and 
northeast of Syria, the north and northeast of Iraq, and the 
Caspian Sea in northern Iran.

The long-term analysis of monthly NDVI_Terra in 
selected important dust sources in the Middle East showed 
a slight reduction in the D3 and was not statistically sig-
nificant (p-value > 0.10). At the same time, NDVI had a 
statistically significant (p-value < 0.05) sharp reduction 
in D4 between 2011 and 2022 (Table 5). Other domains 
(D1, D2, and D5) experienced increases in the NDVI 
values with the Sen’s slope (magnitude of changes) of 
0.0003 (p-value >0.10), 0.002 (p-value<0.05), and 0.0004 
(p-value<0.05), respectively, in the same period.

The soil moisture (0–10 cm underground) distribution 
shows very low values in a large part of the studied area, 
mainly in Egypt, Saudi Arabia, central and southern parts 
of Iraq, south, and east of Lebanon, central and south-
west Iran, and some parts in the southwest of Afghanistan 
(Fig. 7B). Despite the very low soil moisture content in 
vast parts of the Middle East, our analysis showed a sta-
tistically significant increase in the soil moisture levels in 
D1, D2, and D5 (p-value < 0.05). Domains of D3 and D4 
had a decreasing trend but were not statistically significant 
(p-value > 0.10). The increasing trend of soil moisture 
had magnitude changes of 0.20, 0.21, and 0.10 in the D1, 
D2, and D5, respectively. Figure 7 C represents the soil 
temperature distribution in the Middle East, with its high-
est values in parts of Oman. The soil skin temperature 
is relatively high in a vast part of the study domain, but 
north and northwest of Iran, the Zagros Range, East of 
Turkey, and central Afghanistan experienced lower soil 

temperature levels between 2011 and 2022 (Fig.  7C). 
Despite the observed increasing trend of soil moisture con-
tent, soil temperature (0–10 cm underground) had statisti-
cally significant (p-value < 0.05) increases in domains of 
D1, D2, and D5 (Table 5). The remaining domains (D3 and 
D4) showed a decline (not statistically significant, p-value 
> 0.10) in the skin soil temperature.

Figure 8 A shows the monthly averaged total precipita-
tion rate with very low values in the vast areas of the study 
area. The highest values were only witnessed in Turkey, the 
north and northeast of Iraq, some parts of west and east of 
Syria, northern Iran, and the Zagros Range. Table 5 shows 
a general reduction in the selected dust sources in the Mid-
dle East but is statistically insignificant (p-value > 0.10). 
Besides, the monthly averaged mean ambient temperature 
(2-m air temperature) is relatively high in many parts of the 
study area but not in Turkey, the north and northwest of Iran, 
and some parts in the northeast of Iran along with the Zagros 
Range (Fig. 8B). Our trend analysis showed a statistically 
significant increase (p-value < 0.05) over the selected dust 
origins between 2011 and 2022 (Table 5).

The magnitudes of changes were 0.14, 0.09, 0.05, 0.10, 
and 0.11 in the D1, D2, D3, D4, and D5, respectively. The 
maximum and minimum air temperatures followed statisti-
cally significant increasing trends (p-value < 0.05) in our 
interest dust origins (Table 5). The monthly averaged sur-
face wind speed varies in the study area, with its highest 
values on the border of Iran and Afghanistan. The surface 
wind speed is relatively high over Saudi Arabia, north and 
northwest of Iraq, Egypt, and Syria (Fig. 8C). Depending 
on the location of dust origins, the surface wind speed fol-
lowed a different change over time. The domains of D2 and 
D3 had an increasing trend but were not statistically sig-
nificant (p-value > 0.10) with Sen’s slope of 0.01 and 0.12, 
respectively, while remaining domains followed statistically 
insignificant decreasing trends (p-value > 0.10) (Table 5).

Prediction of dust activity in selected major dust 
origins in the Middle East

The best model was fitted according to Table 6. Removal 
of trend and drift in the ARIMA model forecasting was 
achieved through the use of a constant term. To determine 
the presence or absence of a deterministic trend in the 
model, the model was initially fitted with a constant term, 
and then, decisions were made based on the t-statistic and 
p-value regarding the presence or absence of the constant 
term in the model. According to Table 7, the t-statistics 
for all domains (D1, D2, D3, D4, and D5) are less than 
2, with values of 1.92, 0.59, 0.25, 1.51, and 0.95, respec-
tively, indicating that there is no need to include the con-
stant term in the models. The p-values for each domain are 
also shown to be greater than 0.05, with values of 0.084, 
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Fig. 7  Time-averaged maps of 
a NDVI, b soil moisture content 
(0–10 cm underground), and 
c soil temperature (0–10 cm 
underground) in the Middle 
East between 2011 and 2022
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Fig. 8  Time-averaged maps of 
a total precipitation rate, b 2-m 
air temperature, and c surface 
wind speed in the Middle East 
between 2011 and 2022
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0.555, 0.806, 0.140, and 0.352, respectively, indicating that 
the null hypothesis cannot be rejected, meaning there is 
no deterministic trend in the AOD time series models for 
the Middle East (Dargahian and Doostkamian 2021). In the 
next step, judgments are made on the model variables (AR 
and MA). If the p-value for any component of the fitted 
model is greater than 0.05, it should be reduced by one 
order, and the model should be refitted with the new orders. 
As seen in Table 7, the p-values for the model variables are 
less than 0.05.

The dust loads from selected domains was predicted 
using ARIMA models from 2023 to 2029 (Table 8). The 
highest tendency to dust activities was predicted in D5, 
while D3 showed lower activity compared to the remain-
ing dust origins. Trend analysis using Mann-Kendall trend 
test showed a statistically significant increase (p-value < 
0.05) in the dust activity (dust loads) in domains of D1, 
D2, D4, and D5 with Sen’s slope of 0.002, 0.03, 0.003, 
and 0.02, respectively, between 2023 and 2029. The third 
domain (D3) had also an increasing trend in dust activity 
but not statistically significant (p-value > 0.05).

Table 5  The observed trend of changes in some controlling factors in 
the selected dust origins in the Middle East between 2011 and 2022

Domain Sen’s slope Direction P-value Significance

NDVI_Terra
 Domain 1 0.000328 Increasing 0.19562 p > 0.10
 Domain 2 0.002059 Increasing 0.00000 p < 0.05
 Domain 3 -0.000111 Decreasing 0.37591 p > 0.10
 Domain 4 -0.000280 Decreasing 0.00061 p < 0.05
 Domain 5 0.000443 Increasing 0.00117 p < 0.05
Precipitation
 Domain 1 0.000000 Decreasing 0.55325 p > 0.10
 Domain 2 0.000000 Increasing 0.19285 p > 0.10
 Domain 3 0.000000 Decreasing 0.28804 p > 0.10
 Domain 4 0.000000 Decreasing 0.53449 p > 0.10
 Domain 5 0.000000 Decreasing 0.53967 p > 0.10
Soil temperature (0–10 cm underground)
 Domain 1 0.180928 Increasing 0.00000 p < 0.05
 Domain 2 0.206063 Increasing 0.00000 p < 0.05
 Domain 3 -0.024672 Decreasing 0.57031 p > 0.10
 Domain 4 -0.019200 Decreasing 0.35193 p > 0.10
 Domain 5 0.085053 Increasing 0.00454 p < 0.05
Soil Wetness (0–10 cm underground)
 Domain 1 -0.025923 Decreasing 0.21177 p > 0.10
 Domain 2 0.120142 Increasing 0.00601 p < 0.05
 Domain 3 0.010911 Increasing 0.35193 p > 0.10
 Domain 4 0.042194 Increasing 0.15262 p > 0.10
 Domain 5 -0.006723 Decreasing 0.90962 p > 0.10
Surface wind speed
 Domain 1 -0.005235 Decreasing 0.76788 p > 0.10
 Domain 2 0.010773 Increasing 0.51027 p > 0.10
 Domain 3 0.012135 Increasing 0.45372 p > 0.10
 Domain 4 -0.010747 Decreasing 0.63352 p > 0.10
 Domain 5 -0.010939 Decreasing 0.60154 p > 0.10
Maximum temperature at 2 m
 Domain 1 0.147813 Increasing 0.00005 p < 0.05
 Domain 2 0.111609 Increasing 0.00187 p < 0.05
 Domain 3 0.099671 Increasing 0.01030 p < 0.05
 Domain 4 0.123503 Increasing 0.00018 p < 0.05
 Domain 5 0.127003 Increasing 0.00007 p < 0.05
Minimum temperature at 2 m
 Domain 1 0.136451 Increasing 0.00003 p < 0.05
 Domain 2 0.118424 Increasing 0.00253 p < 0.05
 Domain 3 0.106683 Increasing 0.00690 p < 0.05
 Domain 4 0.105583 Increasing 0.00001 p < 0.05
 Domain 5 0.143425 Increasing 0.00001 p < 0.05
Mean temperature at 2 m
 Domain 1 0.102156 Increasing 0.00187 p < 0.05
 Domain 2 0.085438 Increasing 0.01173 p < 0.05
 Domain 3 0.048529 Increasing 0.05363 0.05 < p < 0.10
 Domain 4 0.095775 Increasing 0.00043 p < 0.05
 Domain 5 0.108315 Increasing 0.00026 p < 0.05

Table 6  The best selected ARIMA models in this research.

Row Domains Type models

1 D1 ARIMA (1,1,1)
2 D2 ARIMA (1,2,0)
3 D3 ARIMA (0,1,2)
4 D4 ARIMA (0,1,2)
5 D5 ARIMA (0,2,2)

Table 7  The forecast variables of the selected ME dust origins in the 
current study

Domains Type Coef SE Coef T P

D1 AR1 0.281 0.137 2.05 0.04
MA1 1.06 0.039 27.26 000
Constant 0.001 0.000 1.92 0.084

D2 AR1 -0.689 0.127 -.5.40 000
Constant 00.4 0.007 0.59 0.557

D3 MA1 O.840 0.168 4.99 0.000
MA2 0.140 0.165 0.85 0.040
Constant 000 000 0.25 0.806

D4 AR1 0.830 0.070 11.8 0.000
AR2 0.274 0.099 2.79 0.009
Constant 0.002 0.001 1.51 0.140

D5 MA1 1.487 0.001 12.5 000
MA2 -0.394 0.783 -3.04 000
Constant 0.001 0.001 0.95 0.352
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Generally, our results showed that small values of NDVI 
were observed in the areas with low precipitation and soil 
moisture content, including vast parts of Syria, Iraq, Saudi 
Arabia, and southwestern Iran (Figs. 7 and 8), transferring 
this area into a dust-prone region. Most parts of the Mid-
dle East consist of arid and semi-arid lands and deserted 
areas containing soil particles with different size distribu-
tions (Fig. 9). At the same time, they are active sources of 
atmospheric dust. In our selected dust sources, D3, D1, 
and D5 mainly contain silt and clay, while D2 and D4 
mainly consist of sandy soil particles, which can lead to 
the transportation of large particles to the downwind areas. 
According to our findings, D1 and D5 with higher content 
of silt and clay, compared to other selected dust sources, 
experienced statistically significant changes over time in 
ambient temperature (increasing), total precipitation rate 
(decreasing), surface soil temperature (increasing), and 
surface soil wetness (decreasing but not statistically signifi-
cant in D1). Increasing concerns about potential increases 
in atmospheric dust concentrations are attributed to these 
active dust sources.

Discussion

After having a low-level trend for 3 years, the detected spike, 
which occurred in 2022 springtime dust events, specifically 
in May 2022, could be attributed to the fluctuations in cli-
mate which may happen in decades, or an extreme weather 
event observed in this particular year (Fattahi Masrour and 
Rezazadeh 2022; Francis et al. 2022). Also, these changes 
could have impacts on the soil characteristics, i.e., soil mois-
ture in the arid and semi-arid areas of the Middle East. It 
may be also speculated that it is an impact of changing cli-
mate, but its confirmation requires a longer-term investiga-
tion in the future.

Extreme variations in climate, which can be linked to cli-
mate change, and consequently changes in the arid and semi-
arid areas are vital controlling factors in the dust emission 
potential, the frequency and intensity of SDS events, and 
the movement of dust storms (Hamidi and Roshani 2023; 
Modarres 2021).

Numerous environmental, geographic, and bioclimatic 
factors, such as soil properties, digital elevation models 
(DEM), topographic characteristics, vegetation cover, land 
surface roughness, wind conditions, precipitation, and slope, 
collectively influence dust sources or emissions from land 
surfaces (Gholami and Mohammadifar 2022). Among influ-
encing meteorological parameters, changes in precipitation 
inversely impact the frequency and intensity of dust events, 
while wind speed and temperature variations directly impact 
it (Hamzeh et al. 2021b; Hossein Hamzeh et al. 2021; Kar-
ami et al. 2021; Namdari et al. 2018). The overall detected 
reduction in the total precipitation rate, along with increased 
air temperature and surface wind speed in the selected dust 
origins, could be attributed to the same extremities observed 
in the Middle East. Moreover, increased ambient air tem-
perature can also decrease the required threshold wind speed 

Table 8  The predicted seasonal dust loads (g/m2) from selected major 
dust origins in the Middle East between 2023 and 2029.

Year Domains

D1 D2 D3 D4 D5

2023 0.7488 0.7758 0.6606 0.8190 1.0494
2024 0.7452 0.8100 0.6498 0.8118 1.0872
2025 0.7470 0.8514 0.6498 0.8154 1.1268
2026 0.7506 0.8946 0.6498 0.8208 1.1700
2027 0.7542 0.9450 0.6498 0.8262 1.2168
2028 0.7578 0.9990 0.6498 0.8298 1.2636
2029 0.7596 1.0602 0.6516 0.8352 1.3158

Fig. 9  The particle size distribution over the study domain (https:// soilg rids. org/)

https://soilgrids.org/
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in dust emission initiation by reducing the relative humid-
ity (Broomandi et al. 2021; Gholami et al. 2020b; Molla-
Alizadeh-Zavardehi et al. 2014; Namdari et al. 2018). A 
recently conducted study, by applying Dragonfy algorithm 
(DA) showed that features of DEM or elevation, land use, 
clay content, silt content, precipitation, soil bulk density, and 
wind speed were deemed significant in controlling ME dust 
sources (Gholami and Mohammadifar 2022). In their study, 
the relative importance and contribution of the key variables 
influencing dust sources were assessed using game theory. 
Out of the seven crucial features selected by DA, three vari-
ables, namely, clay content, silt content, and precipitation, 
obtained the highest importance scores. Based on the per-
mutation values, these three variables were found to have the 
most significant impact on the model output, indicating their 
critical role in controlling dust emissions. Overall, pedo-
climatic variables, land surface conditions, and roughness 
emerged as the essential factors governing wind erosion 
and dust emissions (Gholami and Mohammadifar 2022). 
Moreover, in Central Asia, the three most critical variables 
controlling dust sources are precipitation, soil bulk density, 
and slope. Additionally, in the Sistan basin, the essential 
variables controlling dust sources are wind speed, eleva-
tion, and soil organic carbon, all identified through a genetic 
algorithm (Gholami et al. 2020b).

It is worth mentioning that not only fluctuations in cli-
mate are responsible for the growing trend of SDS events 
over the Middle East, but anthropogenic activities are as 
well. Human activities such as drying rivers and lakes, 
land-use changes, poor management of water resources, 
dam construction projects in adjoining countries, the politi-
cal instability causing military operations and war impacts, 
and deforestation have an important role in emerging the 
SDS events in the region (Al-Dousari et al. 2018; Attiya and 
Jones 2020; Hamidi 2020; Ledari et al. 2022; Mahmoodirad 
and Sanei 2015).

Apart from the variables mentioned above, topsoil layer 
wetness (soil moisture content at 0–10 cm underground) is 
an important factor in estimating the potential of sand and 
dust emission. The soil moisture can enhance the strength of 
inter-particle bonds by developing a sticky film between par-
ticles and result in suppressing dust emission. However, the 
topsoil layer wetness strongly depends on surface tempera-
ture (soil temperature at 0–10 cm underground) and will be 
decreased by surface temperature increment and this could 
result in the increase of dust emission potential (Broomandi 
et al. 2021). Hence, it can be said that since wind erosion 
prevailed by the real surface soil wetness, any variation in 
both temporal and spatial scale can influence the tendency 
for dust emission. The observed decreasing trend in the top-
soil layer wetness in association with the increasing trend of 
topsoil temperature in some selected important dust sources 
over the studied period can be a severe and alarming issue 

and reason for the future unprecedented levels of dust storms 
in the Middle East (Darvishi Boloorani et al. 2014; Mehrizi 
2020; Mohammadpour et al. 2020; Yin et al. 2021).

The direct and indirect adverse impacts of dust events 
show the necessity of taking effective functional stabilizing 
techniques to mitigate wind erosion, developing suitable cli-
mate adaption and mitigation strategies, developing a more 
reliable and accurate early warning system, and quantifying 
the impacts on societal implications on both national and 
regional scales. Due to the nature of this natural hazard, 
it is important to build science-based national, regional, 
and international partnerships to combat SDS events in 
source areas and also impacted regions. A transboundary 
multi-hazard risk assessment is important in analysing the 
cause-and-effect relationships and helping policymakers 
fully understand the required dynamics and complexity of 
policy actions. Such a transboundary dialogue and collabo-
ration between affected counties (SDS sources and impacted 
areas) lead to policy interventions reflecting the geospatial 
link among origins and receptors, which can positively influ-
ence adaption and mitigation aspects (Orlovsky et al. 2013).

Conclusion

The present study investigated the spatial and temporal vari-
ation of springtime dust events, including severe, moderate, 
and mild dust storms, in the Middle East from 2011 to 2022. 
The Mann-Kendall trend test was deployed to investigate the 
long-term changes in meteorological parameters (including 
2-m temperature, total precipitation rate, and surface wind 
speed) and soil properties (including soil moisture and tem-
perature at 0–10 cm underground and NDVI) using satellite 
products over the studied time period in selected Middle 
Eastern important dust sources. According to our results, 
there was a spike in the frequency of all types of dust events 
in the Middle Eastern meteorological stations in 2022, par-
ticularly in May, compared to the previous years.

RF analysis indicated a higher tendency for dust activ-
ity in the Middle East by decreases in topsoil layer wetness 
and an increase in surface wind speed at 2-m and surface 
temperature between 2011 and 2022. Mann-Kendall trend 
analysis showed a reduction in the NDVI values and soil 
moisture content (0–10 cm underground), over D3 (p-value 
> 0.10) and D4 (p-value < 0.05), and D1 (p-value > 0.10) 
and D5 (p-value > 0.10), respectively, between 2011 and 
2021, while soil temperature (0–10 cm underground) expe-
rienced a statistically significant increasing trend ((p-value < 
0.05) in domains of D1, D2, and D5. Moreover, our predic-
tions using ARIMA models showed the highest tendency to 
dust activities in D2 and D5 with a statistically significant 
increase (p-value < 0.05) between 2023 and 2029.
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Although the trends indicate an increase in dust activity 
in the Middle East, there are some differences between the 
trends of the investigated selected regions. These differences 
could be due to the effect of climate change on the areas 
and also the political and economic conditions of related 
countries. In other words, according to the political stabil-
ity and suitable economic situation of some countries in the 
Middle East area, they had adequate financial support and 
enough concentration for focusing on dust emission sup-
pressing projects in their local dust sources, and this could 
result in controlling the dust emission in their area and as a 
consequence decrease the effect of climate change on inten-
sification of dust events in their countries.

It can also be concluded that the observed increasing 
trend in the frequency and intensity of different dust events 
in affected meteorological stations along with alarming 
changes over important dust sources in the Middle East 
requires effective international collaborations to combat, 
control, manage, and minimize the catastrophic dust events.

Moreover, due to the numerous advantages of machine 
learning, such as its potential for monitoring natural haz-
ards, providing early warnings, and supporting sustainable 
land management, it can be a promising approach for future 
studies to address challenges related to dust storms, includ-
ing classification and prediction based on satellite images 
or meteorological data analysis. Upon examining existing 
applications of machine learning in dust storm prediction, it 
is evident that most studies have focused on daily predictions 
and real-time detection. There is room for further research to 
extend the prediction horizon beyond three days. Addition-
ally, there is an opportunity to use machine learning to fore-
cast specific dust storm characteristics, such as duration and 
intensity, which are crucial for effective warning systems.

Addressing the spatial or temporal limitations of avail-
able data could be achieved through the integration of 
various data sources, such as regional-scale meteorologi-
cal data providing surface-level atmospheric measurements 
and remote sensing images covering larger areas. Combining 
object detection techniques with meteorological data, such 
as wind speed, direction, and air quality measurements, may 
improve the ability to distinguish dust, clouds, and ice. It is 
recommended to adopt deep learning models, as they excel 
at detecting complex patterns in processing time series data 
which could lead to improved prediction performance. To 
further advance research in this area, investigations into dust 
storm emissions, transport, and depositions are also needed. 
Additionally, exploring the potential benefits of novel deep 
learning models can help enhance the understanding and 
prediction of dust storms.
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