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Abstract The present focus of environmental science is centred on addressing the significant and

controversial challenge of separating acid gases. As a result, scientists are actively engaged in devel-

oping high-performance membranes that can effectively transport gases. An important factor in

achieving superior gas separation efficiency is the ability to control the rate of chemical component

penetration through the membrane. This has led to an increasing interest in mixed matrix mem-

branes (MMMs) that contain inorganic nanoparticles homogeneously dispersed within the polymer

matrix, which are becoming a popular alternative to traditional polymeric membranes. In this work,

the morphological properties of polyurethane (PU) membrane treated with titanium dioxide (TiO2),

which is functionalized with methylene diisocyanate (MDI), were studied, and its gas transport

properties, like selectivity and permeability, were evaluated. FTIR, XRD, TG, DTG, and SEM

analyses were performed for neat and MMMs to study their morphological properties in phase I

of the research. Our results showed that MDI modification improved the dispersion of TiO2 in
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the PU matrix, resulting in a more uniform and compact membrane structure. Moreover, gas per-

meability results showed that incorporating up to 1 wt% of unfunctionalized and functionalized

TiO2 into the PU matrix enhanced the CO2/N2 selectivity by 71.69% and 78.42%, respectively.

Overall, this study demonstrated the potential of MDI-aided tailoring of TiO2 for dispersion engi-

neering in PU MMMs, which can lead to improved gas separation performance. The findings have

implications for developing advanced materials for gas separation applications, particularly in

industrial processes such as natural gas purification and carbon capture.

� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Carbon dioxide (CO2) and other greenhouse gases emitted by the oil

and natural gas industry play an important role in global warming

(Dong et al., 2013; Guo et al., 2019). In addition, most natural gas

reservoirs contain high amounts of CO2, the removal of which is both

economically and environmentally beneficial (Vinoba et al., 2017;

Cheng et al., 2018). In previous studies, membrane technology has

been shown to be a practical and reliable method for gas separation

because it is easy to use, environmentally friendly, has low capital

and operating costs, and provides a controlled penetration rate of var-

ious chemical components (Li et al., 2021; Salahshoori et al., 2021; Liu

and Wang, 2017; Salahshoori et al., 2023). Recently, mixed matrix

membranes (MMM) have emerged as versatile and crucial membranes

to overcome the limitations of conventional membranes such as poly-

meric membranes (impermeability and simultaneous gas selectivity)

and inorganic membranes (lack of large-scale production due to high

manufacturing costs) (Semsarzadeh et al., 2007; Li et al., 2022;

Sadeghi et al., 2011; Hassanajili et al., 2013; Semsarzadeh et al.,

2014; Amedi and Aghajani, 2016; Sodeifian et al., 2019).

It is crucial to select the applicable parent polymer and filler with

suitable physical and chemical properties when attempting to create

miscible blends for the final MMMs with steady performance and

stable thermal and mechanical properties (Dong et al., 2013; Guo

et al., 2019; Vinoba et al., 2017; Cheng et al., 2018; Li et al., 2021;

Salahshoori et al., 2021). Polyurethane (PU) polymers are rubber-

based polymers with a high ability to separate CO2 from gas streams

(Liu and Wang, 2017; Salahshoori et al., 2023). PU is a versatile chem-

ical compound in terms of its structure and properties, which consists

of two main segments: a soft one (polyester/polyester, associated with

gas penetration) and a hard one (urea/urethane, related to mechanical

strength) (Semsarzadeh et al., 2007; Li et al., 2022). There are extensive

published research on the use of PU in the construction of MMMs for

gas separation (Sadeghi et al., 2011; Hassanajili et al., 2013;

Semsarzadeh et al., 2014; Amedi and Aghajani, 2016; Sodeifian

et al., 2019).

Overall, the combination of high selectivity, tunable properties,

high mechanical strength, easy production, and compatibility with

other materials makes PU a suitable candidate for CO2 gas separation

membranes. These membranes have the potential to reduce the concen-

tration of CO2 in industrial gas streams, which can help mitigate the

environmental impact of greenhouse gas emissions (Isfahani et al.,

2016; Mozaffari et al., 2017; Talakesh et al., 2012; Ghadimi et al.,

2019; Fakhar et al., 2019; Mansouri et al., 2021; Shoukat et al.,

2022; Norouzi et al., 2022). Moreover, PU MMMs have shown signif-

icant advantages over traditional polymer membranes in gas separa-

tion due to their improved selectivity, enhanced permeability,

increased stability, easy processing, and versatility. These advantages

make PU MMMs promising membranes for gas separation with

potential applications in various industries such as petrochemical, food

and beverage, and pharmaceutical (Sodeifian et al., 2019; Maleh et al.,

2022; Rayekan Iranagh et al., 2020; Ahmad et al., 2022; Norouzi et al.,

2022; Sazanova et al., 2022; Rosenthal et al., 2022; Ghalei et al., 2019;

Hong et al., 2022; Pacheco et al., 2021; Torre-Celeizabal et al., 2022;

Fakhar et al., 2020).

In addition to parent polymers, nanoparticles (fillers) contribute sig-

nificantly to MMMs’ performance depending on their physicochemical

properties, structure, and surface chemistry (Muntha et al., 2017;

Kardani et al., 2018). There are several well-known and practical fillers

that are employed for the construction ofMMMs, including zeolite imi-

dazole frameworks (ZIFs) (Guan et al., 2020; van Essen et al., 2021),

metal–organic frameworks (MOFs) (Lin et al., 2018; Thür et al.,

2021; Fan et al., 2018; Zhao et al., 2021), carbon nanotubes (CNTs)

(Ismail et al., 2009; Park et al., 2016; Sianipar et al., 2017), zeolites

(Zagho et al., 2021; Bastani et al., 2013); graphene oxide (GO)

(Zhang et al., 2019; Dong et al., 2016), and mesoporous nanoparticles

(Wang et al., 2020). Mesoporous fillers such as silica (SiO2)

(Nematollahi et al., 2019; Salahshoori et al., 2021), Nickel oxide

(NiO) (Aframehr et al., 2020), titanium oxide (TiO2) (Ahmad and

Hågg, 2013), etc., have found widespread application in gas separation

membranes synthesize due to the high gas porosity and permeability,

simplicity of manufacture, and favourable pore structure. Based on

published research, it has been shown that TiO2 nanoparticles enhanced

the MMMs’ performance (Zhu et al., 2019; Wang et al., 2017).

It is widely acknowledged that the functionalization of TiO2 with

organic ligands and functional groups is highly effective in improving

MMMs’ performance (Shamsabadi et al., 2017; Xin et al., 2014).

Nanoparticles are highly prone to aggregation in polymer matrixes

because of their high surface energy. However, the homogeneous dis-

tribution of nanoparticles within the polymer matrix is vital for poly-

mer nanocomposites (Ashraf et al., 2018). There is often a difference in

polarity between polymer matrices and inorganic nanoparticles. It is

important to note that polymers tend to be organophilic, while

nanoparticles are hydrophilic. Therefore, the nanoparticles’ surface

must be modified to achieve maximum homogeneity and homogenous

dispersion in the matrix (Hanemann and Szabó, 2010). 4,40-methylene

diphenyl diisocyanate (MDI) is considered one of the most extensively

applied chain extenders in the two-component systems that utilize reac-

tive polyurethane chemistry since it comprises two isocyanate groups,

and it is exceptionally reactive to hydroxyl and carboxyl groups (xxxx;

Pan et al., 2018). Moreover, MDI-modified TiO2 is pivotal and a func-

tional inorganic filler that improves the MMMs’ performance owing to

the high stability, easy processing, cost-effectiveness, and improved

mechanical, interoperability and thermal stability.

The main aim of this research was to synthesize state-of-the-art

mixed matrix membranes (MMMs) with improved functionality

employing the phase inversion method. To do this, neat TiO2 and

TiO2 nanoparticles modified with MDI groups were synthesized and

grafted with different loading ratios to the PU membrane. Then the

morphology and ability of the synthesized membranes to separate car-

bon dioxide, methane, and nitrogen gases across various pressures

were investigated.

2. Materials and methods

2.1. Materials

Commercial polyurethane (Italy, A6505, Polyester urethane,

density; 1.17 g/cm3 and Hardness; A� 65) was purchased from
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Apilon Company. Dimethylformamide (DMF, Merck) has
been supplied as a polymer solvent. 4,40-methylene diphenyl
diisocyanate (MDI) was purchased from Merck, and nano

TiO2 (�21 nm, specific surface area: � 35–65 m2/g) as filler
was provided from Notrino Co. (Iran).

2.2. Procedure for preparing the membrane

As schematically depicted in Fig. 1, the phase inversion
method was utilized to assemble neat membranes. The fun-

damental methodology behind the production of the major-
ity of commercially available membranes is the phase
inversion process. This process involves the controlled trans-

formation of a thermodynamically stable polymer solution
from a liquid state to a solid state. By using phase inversion,
it is possible to create finely dispersed droplets in a contin-
uous phase, whereas other methods like emulsion prepara-

tion, which involves dissolving surfactant in the continuous
phase and adding dispersed phase with appropriate agita-
tion, often result in unstable macroemulsions (Kumar

et al., 2015).
In this way, the polymer was added to DMF solvent to

yield a concentration of 8 wt%. A shaking water bath is then

used to stir the solution at 60 �C and 250–300 rpm for 24 h
until the polymer is completely dissolved. A 30-minute ultra-
sonic bath at 45 �C is used to remove the bubbles from the
solution. Dope casting was done into a petri dish and subse-

quently placed for 24 h in an oven (Memmert, Germany) at
70 �C for solvent removal (Sadeghi et al., 2011) (Fig. 1a).
The oven was also used to dry the nanoparticles in order to

eliminate moisture prior to the functionalization process. After
that, �3 g of methylene diisocyanate was dissolved in � 25 ml
of dry toluene in a 100 cc three-neck balloon. Then � 1 g of

nano-titania was incorporated into the solution and stirred
for 6 h at 60 �C under constant nitrogen reflux. Finally, to
remove excess methylene diisocyanate from the solution, it

was washed with dry toluene and then accommodated in an
oven at 120 �C for 2 h to dry (Behniafar et al., 2015) (Fig. 1b).

In order to construct MMMs, first, Nanotitania was added
to DMF, and then the solution was sonicated for 20 min in an

ultrasonic for proper dispersion. Following that, 10% by
weight of polyurethane was poured into the solution. A water
bath was then used to stir the solution at 60� C and 300 rpm

for 2 h. The remaining polymer was dissolved for at least
20 h under the same conditions as the previous step. Finally,
the degassed mixture was poured onto a petri dish and trans-

ferred to the oven for 24 h to complete the phase inversion pro-
cess (Fig. 1c). The fabricated membranes have been listed in
Table 1.

2.3. Membranes gas transmission measurement

The method employed for measuring gas transmission through
the membrane in this work is akin to the one used in our prior

study (Amirkhani et al., 2020). The schematic representation
of the laboratory set-up for measuring gas permeability is pre-
sented in Fig. 2. This set-up was used to conduct experiments

under different pressure conditions (4–10 bar), and the mea-
surements were used to assess the MMMs performance. The
cell holder shown in Fig. 2 is located in an incubator in order

to maintain a constant temperature.

The cell was composed of two polished plates with a thick-
ness of 20 mm, which were made of stainless steel 316, 80 mm,
and 180 mm internal and external diameters, respectively, and

a 5 mm split between the plates occupied with plexiglass and
the membrane. Further information about the parts of the cell
holder is also included in Fig. 2.

A magnetic flow meter (MFM) is used to measure the per-
meated gas (membrane output), which is coupled to gas chro-
matography (GC). Gases such as CO2, CH4, and N2 were

passed through a membrane module which was connected to
regulated-pressure cylinders to control the pressure. Equation
(1) could be used to calculate the permeability of a membrane
at a steady state.

PA ¼ 10�10 � T0

T
� P

P0

�Q� L

ADP
ð1Þ

here PA stands for component A permeability (Barrer), T and

T0 denote the temperature of the incubator (K) and the stan-
dard temperature (K), respectively, P and P0 represent the
ambient and standard pressures (cmHg), Dp indicates the dif-

ference between the membrane pressure upstream and down-
stream, L signifies the thickness of the membranes (mm), Q
(STP) refers to the permeate gas volume flow rate via the mem-

brane (cm3/s), and A epitomizes the membrane effective cross-
sectional area (cm2).

2.4. Membrane characterization

Fourier transform infrared spectroscopy (FTIR) was used to
study the chemical structures and functional groups of the
pure and the MMMs (NICOLET Magna IR 550), in the range

between 400 and 4000 cm-1. First, the samples had to be
placed in a vacuum oven with KBr heated to 110 �C for at least
two hours to remove the moisture absorbed by the models. X-

ray diffraction patterns (Philips X’pert pro MPD, Nether-
lands) were used to determine the crystallinity of the mem-
brane. For all X-ray patterns (h2), copper radiation at 40 kV

voltage and 40 mA was used to produce a diffraction pattern
from 10� to 80�. The surface morphology, type of particle
aggregation, shape and average particle size were studied by
scanning electron microscopy (SEM) (EM3200, KYKY). To

avoid the destruction of the cross-sectional structure, the sur-
face of the samples was coated with a thin layer of gold metal
after being broken in liquid nitrogen and the cross-section was

deposited. The thermal stability of the MMMs formed with
TiO2 and MDI-TiO2 was investigated by TG analysis (Mettler
Toledo, model SDTA851e) using nitrogen as atmosphere with

a heating rate of 10 �C per minute.

3. Results and discussions

3.1. Characterization

3.1.1. FTIR analysis

FTIR spectra can be used to evaluate molecular interactions in
blends and the changes that occur over time during such inter-

actions (Sodeifian et al., 2019; Valizadeh et al., 2022). One of
the most visible effects of FTIR in molecular interactions in
PU is the intensity of the formation of hydrogen bonds

between the polymer segments. Fig. 3a describes the FTIR
spectra of (un)functionalized TiO2 and MDI. According to

Methylene diisocyanate - aided tailoring of nanotitania for dispersion engineering 3



these findings, the MDI-relevant functional groups appear on

the surface of nanoparticles after TiO2 has been modified.
According to Fig. 3a, the appearing peaks at wavelengths less
than 800 cm�1 are related to Ti-O-Ti bonds. After the func-

tionalization of nanoparticles, this peak has become smaller

and thinner due to the changing in the functional group of
the nano TiO2. Furthermore, the peaks appearing in the range

Fig. 1 A graphical representation of the neat and MMMs synthesis processes (Created with BioRender.com).
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of 1170 cm�1 to 1790 cm�1 indicate that the nano TiO2 has
been successfully functionalized.

Fig. 3b depicts FTIR spectrum patterns of PU neat and

MMMs. As revealed, the change in location and intensity of
different functional groups like carbonyl (C = O), amino acid
bonding (N–H), and hydrogen-bond groups is shown, which is
attributed to the change in the structure of membranes. Fig. 3b

indicates that carbonyl stretching vibrations of PU-MMMs
offered significant information regarding the influence of
TiO2 nanoparticles on hydrogen bonds between hard and soft

microphase parts of the membranes. TiO2 nanoparticles in the

MMMs led to interference in the spectra associated with the
carbonyl (C = O) and amine (N–H) bonds. The frequency
of absorption of carbonyl groups was indicative of how these

compounds were bonded by hydrogen bonding to N–H of
urethane groups. It is worth noting that if carbonyl groups
connected with N–H groups of urethane, absorption of these

groups appeared at lower frequencies, which is called the
bonded carbonyl group. The appeared peak at higher frequen-
cies is related to free carbonyl (Sadeghi et al., 2011). This indi-

cates that there is free carbonyl in the polyurethane; therefore,
the N–H urethane groups in the hard segment of the polyur-
ethane are not bonded to it. Thus, the N–H group of urethane
in the hard segment is hydrogen-bonded to the ester/ether

group in the soft segment of the polyurethane (Sodeifian
et al., 2019). The carbonyl group peaks were further investi-
gated to survey the effect of adding nano TiO2 on the phase

separation of rigid and soft segments in the assembled
membranes.

As described in Fig. 3c (magnification of the peak of car-

bonyl groups), adding 0.1, 0.5, and 1 wt% of TiO2 to a poly-
urethane matrix leads to a decrease in the intensity of the free
carbonyl peak and an increase in the intensity of the capped

carbonyl peak (compared to the neat PU). These measure-
ments revealed that more hydrogen bonds were formed
between carbonyl groups of PU and the N–H groups in the
hard segment, implying more phase separation had occurred

(Sadeghi et al., 2011). Consequently, it can be concluded that
a portion of the nanoparticles was distributed in the soft seg-
ment due to the interaction of the OH groups of TiO2 with

the ester groups of polyurethane. This resulted in a reduced
hydrogen bonding between the ester groups of a soft segment

Table 1 The fabricated membranes in this study.

Membrane

code

Sample Description

E-M1 PU Neat

E-M2 PU-TiO2/

0.1

PU containing 0.1% nano-TiO2

E-M3 PU-TiO2/

0.5

PU containing 0.5% nano-TiO2

E-M4 PU-TiO2/1 PU containing 1.0% nano-TiO2

E-M5 PU- TiO2/

0.1F

PU containing 0.1% functionalized

nano-TiO2

E-M6 PU-TiO2/

0.5F

PU containing 0.5% functionalized

nano-TiO2

E-M7 PU-TiO2/

1F

PU containing 1.0% functionalized

nano-TiO2

Fig. 2 A visual description of the laboratory set-up for measuring gas permeability. This image provides additional details about the

membrane holder.

Methylene diisocyanate - aided tailoring of nanotitania for dispersion engineering 5



Fig. 3 FTIR spectra results of a) unfunctionalized TiO2, functionalized TiO2, and MDI, b) neat PU and MMMs, and Magnification of

the peak of carbonyl groups related to c) PU-TIO2 and d) PU-MDI-TIO2.
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and the N–H groups of a hard segment. Magnification of the
peak of carbonyl groups for the MMMs were distinguished
in Fig. 3d. As shown, the intensity of free carbonyl groups

decreased with 0.1, 0.5, and 1 wt% of functionalized TiO2 to
the polyurethane membrane. Thus, MDI interactions with
the membrane matrix led to a more efficient distribution of

functionalized TiO2 within soft segments. The location of the
peaks associated with free and bonded carbonyls has also
shifted to lower frequencies. Based on these findings, it has

been demonstrated that there are more hydrogen bonds
between N–H urethane groups and carbonyl urethane groups
in the hard segment (Sodeifian et al., 2019). Therefore, it could
be concluded that by the addition of (un)functionalized TiO2

to the polymer matrix; the unfunctionalized TiO2 particles
interact with their OH surface groups while the functionalized
TiO2 particles interact by their OH, NH, and NCO surface

groups with ester groups in the soft segment of polyurethane,
resulting in more hydrogen bonds between the carbonyl groups
and N–H urethane groups in the hard segment. In conclusion,

based on the above elucidations, it would be reasonable to
assume that both functionalized and unfunctionalized TiO2

were distributed in the soft polymer segment.

3.1.2. X-ray diffraction analysis

An X-ray diffraction experiment was conducted to determine
structural changes caused by TiO2 and MDI-TiO2 domains.

XRD patterns of neat PU and the MMMs with 0.1, 0.5, and
1 wt% of unfunctionalized and functionalized TiO2 are shown
schematically in Fig. 4, respectively. It should be noted that the

XRD patterns of polymers with large crystalline regions usu-
ally show sharp peaks and vigorous intensity, whereas those
of polymers with amorphous regions are rather broad
(Salahshoori et al., 2022; Salahshoori et al., 2021;

Salahshoori et al., 2021). As rules, a study of the XRD results
mainly depends on peak positions and intensities (Delbari
et al., 2021). An analysis of the XRD pattern for neat PU

membranes shows that the polymer has an amorphous struc-
ture characterized by a broad peak at approximately
2h = 20� (Sadeghi et al., 2015). Peak positions and intensity

are generally related to the morphology of polyurethane mem-
branes and the crystallinity degree within the soft and hard

segments, respectively (Hassanajili et al., 2013). Fig. 4 shows
that peak positions have moved toward the lower angles due
to nanoparticles being added to the polymer matrix. The

occurrence of interference could be a contributing factor to
this phenomenon. Likewise, XRD patterns revealed that poly-
urethane structures had not been altered by adding (un)func-

tionalized TiO2. It is worth mentioning that the membrane’s
crystallinity significantly impacts its transport properties since
gas molecules enter through its amorphous part (An adjacent

crystal’s space, for example) (Tan and Rodrigue, (2019) 1310.).
The position of the PU peak was slightly changed when

TiO2 and MDI-TiO2 particles were mixed with PU polymer,
however the intensity of the peak decreased as a result of the

mixing. PU peak intensity decreased with increasing TiO2

and MDI-TiO2 particle content, signifying increased amor-
phous regions, which should have an impact on the transport

properties as shown later.

3.1.3. Thermogravimetric (TG) and derivative

thermogravimetric (DTG) analyses

It is generally accepted that TG analysis is the most reliable
technique for determining the MMMs’ thermal properties. It
shows the degradation range of polymer chains at different

temperatures. A visual representation of the temperature-
dependent weight change is plotted in Fig. 5. Based on the
TG curves (Fig. 5), it is evident that polymer chains on neat

and MMMs degrade at temperatures between 230 �C and
400 �C. Further, Fig. 5 indicates that PU membranes modified
with TiO2 and MDI-TiO2 show different thermal stability with

regard to weight loss (percentage), and PU-MDI-TiO2 MMMs
show higher thermal stability. As well as that, it has also been
possible to identify the temperature of the degradation, the
loss in weight, as well as the quantity of ash remaining in the

neat and MMMs based on TG curve analysis. Fig. 5 illustrates
that the MMMs samples exhibited more excellent thermal sta-
bility than neat PU samples. There were two stages in the ther-

mal decomposition of neat PU, as shown in the TG
thermogram (Fig. 5). Initially, a slight weight loss was
observed between 270 �C and 320 �C; additionally, a signifi-

cant weight loss was observed between 350 �C and 460 �C, sug-
gesting that the polymer backbones were being destroyed. 98%
of the membrane’s weight is decomposed in the second stage,
and approximately 1.5% remains in the ash state after the test.

A more significant phenomenon in MMMs is the increase in
ash remaining after the degradation process. As shown in
Fig. 5, with the rise in the amount of TiO2 and MDI-TiO2

nanoparticles in the PU structure from 0.5% to 1.5%, the
remaining ash has increased from 7.7% to 19.6% and 22.3%
to 33.4%, respectively. This rise is indispensable in specifying

the thermal stability of membranes modified with TiO2 and
MDI-TiO2 particles as suitable fillers. The thermal stability
of MMM is affected by particle inclusions in the polymer. Par-

ticles interact with polymers through their intrinsic thermal
stability or their interaction level. This leads to improved
MMM thermal stability because of the motion restriction of
polymer chains, especially when effective interactions are pre-

sent (Meshkat et al., 2018).
A thermogram with a close-spaced weight versus tempera-

ture peaks is analyzed with derivative thermogravimetry

(DTG) analysis by plotting the rate of material weight change
against temperature. An indication of thermal stability is pro-Fig. 4 An analysis of XRD patterns for polyurethane, PU neat,

PU-TiO2, and PU–MDI-TiO2 MMMs.
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vided by the maximum DTG peak, which indicates the temper-
ature at which the greatest rate of weight loss occurs. From

Fig. 6, it can be seen that the main decomposition step occurs
at lower temperatures with the addition of PU/TiO2 and PU/
MDI-TiO2 MMM as the peak intensity shifts downward.

Minor defects at the polymer-MDI-TiO2 interface are likely
to be responsible for this slight decrease in thermal stability.
Nevertheless, low temperature gas separations can still be car-
ried out with the final MMM thermal stability.

3.1.4. Morphology characterization

There is a vital role in the morphology of the distributed phase

within MMMs in determining their gas permeation properties
(Mohamed et al., 2022). Fig. 7 (I) and Fig. 8 (II) illustrate the
surface and cross-sectional SEM images of PU-MMMs con-
taining 0.5 wt% functionalized and unfunctionalized TiO2. It

should be noted that TiO2 contains OH-functional groups,

which are responsible for the agglomerating effect on nanopar-
ticles. It becomes evident that the dispersion of nanoparticles

in the polymeric matrix was improved by functionalizing the
nanoparticle (Fig. 7 (I) and Fig. 8 (II)). After functionaliza-
tion, nanoparticles and polymeric chains became easier to

intermix, which, in turn, led to a better distribution of
nanoparticles in polymeric chains, which could hinder agglom-
eration. Based on the SEM images, it could be concluded that
unfunctionalized TiO2 particles were more likely to aggregate

within the polymer matrix, while functionalized TiO2 particles
tended to interact with polymer chains instead through the
improved functional groups on their surface. The latter results

in more homogenous MMMs.

3.1.5. Gas permeation results

3.1.5.1. Neat PU membranes. Permeation in PU is mainly con-
trolled by the solution-diffusion mechanism (Isfahani et al.,

2016). PU contains polar groups that make it an ideal site
for adsorbing molecules (Du et al., 2012). It can be highly
effective for selectively transporting CO2 from a gas mixture.
As part of the testing procedure, permeability tests were per-

formed for pure gases (N2, CO2, and CH4) to determine the
membranes transport performance.

Fig. 9a demonstrates the results of the gas permeation test

using a neat membrane at a pressure of up to 10 bar. As
depicted in Fig. 9a, the CO2 permeability was significantly
higher compared to CH4 and N2. CO2 is more permeable than

CH4 and N2 owing to its lower kinetic diameter CO2 (3.3 Å)
than N2 (3.88 Å) and CH4 (3.64 Å), as well as being more
polarizable and condensable (Nasirian et al., 2019; Bernardo
et al., 2012) and CO2 shows more affinity for PU as the exper-

iment revealed. The permeation of CH4 exhibited a higher
value than that of N2 (see Fig. 9a). A solution-diffusion mech-
anism can be used to describe this phenomenon (Sodeifian

et al., 2019).
The dissolution of CH4 in the polymer is more significant

than of N2. As pressure increased from 4 bar to 10 bar, the per-

meability for CO2 rose from 41.34 to 59.67 barrer, but CH4

Fig. 5 A graphic representation of TG curves analysis for PU polymer chain modification with TiO2 and MDI-TiO2.

Fig. 6 A graphic representation of DTG curves analysis for PU

polymer chain modification with TiO2 and MDI-TiO2.
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and N2 permeabilities remained nearly constant. The free vol-
ume within the polymer matrix decreases as the pressure
increases. In response to the reduction in the polymer-free vol-

ume, molecules with larger molecular sizes (such as N2 and
CH4) are found to be more difficult to pass through the mem-
brane than those with smaller molecular sizes. CO2 molecules,

in addition of being smaller in size, are more condensable
under these conditions and, as a result, have a better solubility
in the matrix. In addition, the phenomenon of plasticization in

the polymer matrix occurs with increasing pressure in the pres-
ence of CO2. Fig. 9b demonstrates an increase in selectivity
from � 79.2 to � 90 for CO2/CH4 and � 53 to � 68 for

CO2/N2 with increasing pressure from 4 to 10 bar, respectively.

3.1.5.2. Polyurethane MMMs. Fig. 9c shows the results of CO2

permeability analysis in polyurethane membranes filled with

TiO2 and MDI-TiO2 at a pressure of 4 bar. As demonstrated
in Fig. 9c, an increase in the amount of TiO2 leads to an initial

decrease in CO2 permeability, while the CO2 permeability ini-
tially increases with an increase in the amount of MDI-TiO2 in
the PU membrane. As stated in the FTIR and XRD analysis

sections, TiO2 nanoparticles are distributed in the soft polyur-
ethane section of PU-TiO2 MMMs. In PU membranes, the
soft part of the membrane that forms as a result of microphase

separation is the penetrable part of the membrane for gaseous
molecules. However, it is also important to note that the hard
part acts as an impenetrable barrier for gas molecules because

of the capability to create cross-links and change the mobility
of the polymer chains, which can significantly affect the overall
gas separation properties of membranes. Consequently, the

distribution of TiO2 in the soft part may decrease the mobility
of the chains in the soft part and thus reduce the gas perme-
ability by reducing the solubility of gas molecules. This may
be explained by the fact that these nanoparticles have a ten-

dency to achieve a tortuous path in the passageways of gaseous
molecules when present in the soft part of the membrane. In

Fig. 7 SEM images of PU MMMs I) 0.5 wt% of nanoparticles. Cross-section of a) E-M3 and b) E-M6, the surface image of c) E-M3

and d) E-M6.
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other words, the flexible part of polyol and soft polyurethane
has sufficient mobility to pass gases, while the presence of for-
eign materials (nanoparticles) reduces the voids and free vol-

ume of the soft part and thus reduces the passage of gas
(Chen et al., 2005). These results are consistent with Maxwell’s
proposed model. According to Maxwell’s model, the presence

of TiO2 reduces the mobility of chains and increases the curva-
ture of gaseous molecules passages, which reduces the perme-
ability of the molecules in polymer matrixes. It was also

observed in the XRD test results that the membrane becomes
more crystalline by adding TiO2 to the polymer matrix. Crys-
tallized regions of the polymer structure reduce the space avail-
able for gas molecules to pass through the membrane (Wu

et al., 2022; Zhang et al., 2021; Tang et al., 2023). This might
also contribute to reducing the gas permeability of polymer
membranes (Sadeghi et al., 2011). Based on the figure, the

highest permeability is obtained at 1% TiO2 concentration,
which can be attributed to increasing polar groups of OH in

the polymer matrix, which increases interactions with CO2

molecules and ultimately leads to further adsorption and disso-
lution of CO2 within the membrane matrix.

On the other hand, as shown in Fig. 9c, gas permeability is
increased by adding MDI-TiO2 with different loading into the
polymer matrix. In accordance with the information provided

in the FTIR and XRD test results, it is plausible to imagine the
distribution of these nanoparticles in both the soft and hard
parts of the polymer. The presence of nanoparticles in the hard

part of the polymer results from interactions with polar
groups, which can disrupt the order and polymer chains den-
sity, which then leads to a decrease in crystallinity of polymer
structures by removing the strong bonds in the chain in the

hard phase, which increases gas permeability and the space
available for the polymer to cross the membrane. It can also
be said that the distribution of a significant portion of MDI-

TiO2 in the hard part does not reduce the free volume in the
soft part of the polymer (permeable part). The SEM image

Fig. 8 SEM images of PU MMMs II) 1.0 wt% of nanoparticles. Cross-section of a) E-M4 and b) E-M7, the surface image of c) E-M4

and d) E-M7.
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results also indicated that MDI-TiO2 disperses better in the
polymer matrix than TiO2, which results in improved gas sep-
aration results.

Fig. 9d shows the changes in CO2/N2 and CO2/CH4 selec-
tivity in PU membranes at a pressure of 4 bar with increasing
weight percentages of TiO2 and MDI-TiO2. Based on the fig-

ure, it can be observed that the CO2/N2 selectivity is typically
elevated in comparison with that of CO2/CH4 across all mem-
branes owing to the elevated CH4 solubility and permeability

in comparison with N2 for polymer-based rubber membranes.
Based on the selectivity analysis of neat and MMMs, it was

evident that the CO2/CH4 and CO2/N2 selectivity has been
increased in MMMs compared to neat PU membranes. An

ester group is present in the soft polymer part, where it is
bonded to the hydroxyl groups on the nanoparticle surface,
resulting in a reduction in the polymer chain mobility, which

consequently reduces the rubber properties of PU (reduces
the solubility of polarizable gases). Based on Fig. 9d, increas-

ing the loading of nanoparticles in the membrane increases the
selectivity for CO2/N2. This is due to the increase in the num-
ber of polar groups in the polymer substrate, resulting in

increased CO2 adsorption. The result is that larger N2 and
CH4 molecules are more constrained to pass through the mem-
brane than small CO2 molecules. This leads to an increase in

selectivity.
The impact of increasing pressure on the permeability of

the CO2 gas changes in neat and MMMs membranes with dif-

ferent loading percentages are depicted in Fig. 10a-b.
It is worth noting that increasing pressure causes molecules

to penetrate into the polymer matrix deeper, which reduces the
free space in the polymer matrix for gas to pass through.

Moreover, molecules with larger molecular sizes (N2 and
CH4) are more restricted from passing through the membrane
than gases with smaller molecular sizes due to the reduction in

the free volume of the polymer. Additionally, CO2 molecules,
in addition to being smaller in size, are more condensable and

Fig. 9 Characteristics of neat PU membranes for gas permeation over pressure a) permeability of the N2, CH4, and CO2, b) selectivity of

the CO2/N2 and CO2/CH4, c) CO2 permeation for PU-TiO2 and PU-MDI-TiO2 membrane versus nanoparticle loading and d) CO2/CH4

and CO2/N2 selectivity of PU-TiO2 and PU-MDI-TiO2 membrane versus nanoparticle loading.
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polarizable and, as a result, are more likely to dissolve. As the
polymer chain plasticization is induced by CO2, the polymer
matrix becomes more mobile, and the free volume of the poly-

meric chain increases, thus enhancing gas penetration.
Fig. 10c-f shows the effect of increasing pressure on the

CO2/N2 and CO2/CH4 selectivity in PU membranes that have

been treated with TiO2 and MDI-TiO2 at different loadings.
With MMMs and pure polyurethane membranes, increasing
the pressure would allow a higher CO2 permeability, while vir-

tually the same amount of permeability would be maintained
for the other two gases. Therefore, the selectivity of CO2/N2

and CO2/CH4 in the PU-TiO2 and PU-MDI-TiO2 membranes

increases with increasing gas pressure. When the effect of pres-
sure on selectivity is compared between neat and MMM mem-
branes, it can be concluded that the dependence of MMM

membranes on pressure is less than that of neat membranes.
It appears that adding nanoparticles to a polymer membrane
matrix increases its rigidity and decreases the mobility of its

Fig. 10 Characteristics of gas permeation of a) neat PU and b) MMMs membrane versus pressure, selectivity of the c) CO2/N2 and d)

CO2/CH4 in PU-TiO2, and selectivity of the e) CO2/N2 and f) CO2/CH4 in PU-MDI-TiO2 membrane versus pressure.
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chains, reducing the membrane-free volume fraction and, as a
result, increasing the pressure, has less impact on the gas
permeability.

Notably, achieving good dispersion and compatibility of
the nanoparticles in the polymer matrix and solid interfacial
interactions between them are crucial for improving the gas

separation performance of the MMMs (Zhu et al., 2016).
Strategies such as surface modification of the nanoparticles,
copolymerization of the nanoparticles with the polymer

matrix, or optimization of the processing conditions can be
used to achieve these objectives (Kamble et al., 2021). The pri-
mary results in our study demonstrated that the functionaliza-
tion of TiO2 with MDI can enhance the dispersion and

compatibility of the nanoparticles in the PU matrix, leading
to stronger interfacial interactions and improved gas separa-
tion performance of the synthesized mixed matrix membranes.

MDI-modified TiO2 is a type of inorganic filler that has several
advantages compared to other fillers in constructing mixed
matrix membranes, including:

1. High compatibility with polymer matrices: MDI-modified
TiO2 has a high affinity for various types of polymer matri-

ces used in mixed matrix membranes. This makes it easier
to disperse the filler within the polymer matrix, resulting
in improved mechanical and transport properties.

2. Enhanced interfacial interaction: The modified TiO2 parti-

cles have a reactive surface that can form covalent bonds
with the polymer matrix. This enhanced interfacial interac-
tion results in stronger adhesion between the filler and poly-

mer, leading to improved mechanical strength and reduced
filler leaching.

3. Increased surface area: MDI-modified TiO2 has a high sur-

face area, which increases the number of active sites avail-
able for interaction with the polymer matrix. This can
lead to improved transport properties and increased selec-

tivity in the mixed matrix membrane.
4. Improved selectivity: The high surface area of MDI-

modified TiO2 allows for the creation of a more tortuous
path for gas transport in the mixed matrix membrane. This

can enhance the selectivity of the membrane, making it
more effective at separating gases.

5. Enhanced thermal stability: MDI-modified TiO2 can

improve the thermal stability of the mixed matrix mem-
brane, making it more resistant to degradation at high
temperatures.

4. Conclusion

The effect of pure TiO2 nanoparticles and their functionalization with

MDI on polyurethane membranes’ morphological and transport prop-

erties has been investigated using experimental techniques. SEM,

FTIR, TG, DTG and XRD analyses were utilized to characterize

the fabricated neat and MMMs. Phase separation in FTIR results

was observed between soft and hard segments of polyurethane filled

with functionalized and (un)functionalized TiO2. In other words, a

portion of the nanoparticles were deposited in the soft segment as a

result of an interaction between the OH and esters of PU. This leads

to a reduction of the hydrogen bonds between the ester groups of

the soft segment and the N–H groups of the hard segment. Moreover,

the unfunctionalized TiO2 by its surface OH groups and the function-

alized TiO2 through the interaction of its surface groups (OH, NH and

NCO) interacted well with ester groups in the soft segment of polyur-

ethane and distributed among the polymer chains, resulting in more

hydrogen bonds between the carbonyl groups and N–H urethane

groups in the hard segment. Using the SEM images, it was visible that

the functionalized particles dispersed better within the polymer matrix

than the unfunctionalized ones. Adding both functionalized and

unfunctionalized TiO2 improved the MMMs selectivity through gas

permeation results. It can be concluded that adding functionalized

TiO2 into the polymer matrix promoted the gas permeation properties

of polyurethane membranes. The structural properties as well as the

permeation behaviour for single gases and mixtures therefrom, serve

as the basis for simulations in further work to generate a deeper under-

standing of the underlying mechanisms. For future work, the effect of

different nanoparticles with different functional groups to treat the PU

can be studied and their effects on the morphology and gas separation

ability of this membrane to separate important industrial and haz-

ardous gases can be assessed. Blending PU with various copolymers

produces innovative composites that can be studied to evaluate their

morphology and gas separation enhancements in mixed matrix mem-

branes (MMMs). Additionally, the Design of Experiment (DOE)

methodology is a valuable tool that can be employed to optimize

diverse parameters including temperature, pressure, concentration,

and pH.
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