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A B S T R A C T   

Industrial wastewaters contaminated with heavy and toxic metals cause serious risks to human health and other 
forms of life. The performance of biochar for the elimination of heavy metals has been acclaimed. It is highly 
advantageous to develop efficient computational methods to predict its biosorption performance. In this 
research, the performance of four types of machine learning methods including adaptive neuro fuzzy inference 
system (ANFIS), coupled simulated annealing-least squares support vector machine (CSA-LSSVM), particle 
swarm optimization-ANFIS (PSO-ANFIS) and genetic programming (GP) was evaluated. The modeling was 
conducted on 44 types of biochar reported in 353 datasets from heavy metal adsorption experiments. All four 
models have demonstrated good predictive performance, especially by LSSVM, GP and PSO-ANFIS procedures. 
The correlation coefficient (R2) values of test dataset for ANFIS, CSA-LSSVM, PSO-ANFIS, and GP were 0.9428, 
0.9832, 0.9712 and 0.9750. The values of mean squared error (MSE) and average absolute relative deviation 
(AARD) were 0.0020 and 0.36 for CSA-LSSVM model which has the superior capability than other models. The 
sensitivity analysis showed that the key parameters in heavy metal removal by biochar were the concentration 
ratio of heavy metals/biochar and total carbon content in biochar. A MATLAB code was developed to estimate 
the biosorption efficiency. Novel equation based genetic programming assists researchers to predict sorption 
yield of heavy metals by reducing the costs and time. Analyzing the results of this research can increase the 
understanding of researchers towards the effective remediation of hazardous chemicals in water resources.   

1. Introduction 

Thermal degradation methods can be utilized to produce biochar 
from the carbon-rich biomass [1]. Among dissimilar preparation 
methods, pyrolysis is the most common heating procedure. Different 
crude materials including agricultural waste, municipal solid waste, 
industrial by-products, and sewage sludge can be utilized for producing 
biochar. Biochar has been widely used in increasing soil fertility and 
carbon removal [2], bioenergy production [3] and environmental 
bioremediation [4]. Extensive research has been conducted to improve 
the functionality and capacity of biochar towards pollutant removal 
through modification and functionalization [5]. In comparison to 
organic pollutants which are biodegradable, the inorganic pollutants 
(primarily heavy metals) are not biodegradable and tend to pass through 

the food chain via bioaccumulation and biomagnification. It is impor-
tant to eliminate these persistent pollutants from water and wastewater 
streams for protecting the human and ecosystems from adverse biolog-
ical effects. 

In order to meet the water quality standards for heavy metal pol-
lutants, different treatment methods such as activated carbon adsorption 
[6], electrocoagulation [7], ion exchange [8], and nanofiltration [9] 
have been utilized in water and wastewater treatment processes. Many 
of such methods are considered to be robust and reliable for metal 
removal, however, most of them are costly. Thus, it is important to 
develop metal removal technologies which are effective, relatively 
inexpensive, and sustainable, for which biochar is a good candidate 
[10]. 

Biochar has shown preferable ability to remove organic pollutants 
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[11] and inorganic pollutants [12] from water and wastewater. Biochar 
has been widely promoted as an advantageous alternative technology 
for metal elimination in water and wastewater treatment [13]. Mohan 
et al. [14] calculated the elimination yields of lead (Pb) and cadmium 
(Cd) ions using oak bark char which are similar to those for Calgon F-400 
(commercial type of activated carbon). The obtained results of research 
by Chen et.al [15] illustrated that biochar made from corn straw and 
wood are good candidates for absorption of zinc (Zn) and copper (Cu) 
from water solutions. In using soybean stalk biochar, Kong et al. [16] 
reported 75–87 % mercury removal in aqueous solutions. These exam-
ples have indicated the advantageous elimination of different heavy 
metals by biochar prepared from a diversity of feedstock. 

In addition, biochar can be engineered and functionalized through 
surface modification as well as pretreatment of feed stocks [17], which 
can enhance its adsorption capacities for heavy metals which are anal-
ogous or even better than activated carbon. For example, Inyang et al 
[18,19] used anaerobically digested biomass to prepare biochar which 
showed greater Pb adsorption capacity than activated carbon. More-
over, there are other modifications that can significantly improve the 
sorption capacity of biochar for metals (e.g., Cu) from aqueous phase. 
Physical treatment of the feedstock is one of these modifications in 
which pulverization is being used before pyrolysis [20]. 

Up to now, research has considered the adsorption of heavy metals 
on biochar derived from lignocellulosic biomass [21]. Cellulose, lignin, 
and hemicellulose are the major sources of materials for the production 
of biochar with high surface area and oxygen-rich functional groups 
[22]. These materials have shown high performance in removing 
different heavy metals [21]. Inyang and et al. displayed that the 
adsorption capacities of biochar prepared from wooden biomass could 
reach a biosorption capacity of 89,600 mg/kg for the heavy metals 
removal which is comparable to activated carbon [21,23]. In addition, 
heavy metals removal efficiency of the lignocellulosic biochar reached 
21,840 mg/kg in wastewater stream from leather tanning and finishing 
industry [24], demonstrating biochar’s agile performance under tough 
conditions. For a deeper understanding of this topic, most studies so far 
followed similar production process for biochar by pyrolysis at relatively 
high temperature. The capability of biochar for heavy metal biosorption 
in different operating conditions has been examined by varying initial 
metal concentration, adsorbent dosage and solution pH. Based on the 
results from experiments, isotherm models, adsorption kinetic models, 
and maximum adsorption capacity of the biochar were consequently 
defined. The biosorption mechanism may include ion exchange of heavy 
metals with cations such as Mg2+, K+, Na+ and Ca2+, surface complex-
ation, precipitation with minerals, and coordination with π electrons 
[25]. It should be noted that such experimental methods are highly 
valuable, but are relatively complicated and inefficient to unravel the 
adsorption mechanisms, relative contributions of different variables, 
and the effects of biochar characteristics (e.g., particle size, surface area) 
in biosorption. In addition to the characteristics of biochar, there are 
other influential factors such as initial pollutant concentration, metal 
properties and environmental conditions that directly affect the bio-
sorption of heavy metals [21]. Furthermore, the common experimental 
approach typically involves examining control variables individually, 
which does not help to define the relative contributions of each influ-
ential factor to total biosorption capacity. It is imperative to develop a 
better understanding of the relative importance of each variable, which 
will provide more insight to the biosorption of heavy metals in real 
wastewater and improve the overall removal efficiency. 

Heavy elements are among the most important environmental pol-
lutants, which have been of great interest in the last few decades. Heavy 
metals are not biodegradable easily and therefore pose long-term threat 
to human health, through food, drinking water and air [26] as the most 
common exposure pathways to our body. Due to the harmful environ-
mental effects of heavy metals on human health and environment, more 
studies should be done on the source, concentration and methods to 
prevent these pollutants from entering to the environment (water, soil 

and air) [27]. 
Currently, machine learning (ML) methods as a popular modelling 

practice are widely researched for predicting the process performance in 
water and wastewater treatment [28]. However, the application of 
machine learning models in adsorption assessment is limited up to now, 
and this study was designed to address such a knowledge gap. Therefore, 
building and training a high-quality model which is able to provide 
accurate estimates regarding biosorption efficiency is the purpose of this 
study. In the current study, the ANFIS, CSA-LSSVM, PSO-ANFIS and GP 
models were expanded to estimate the biosorption capacity of 44 
different biochar sorbents for the elimination of lead, copper, zinc 
cadmium, arsenic and nickel. For the first time, novel and reliable ma-
chine learning models were applied to predict the biosorption capacity 
of biochar sorbents for the elimination of heavy metals. GP model yields 
an accurate and simple mathematical equation for the prediction of the 
adsorption process. This simple equation can be used by various re-
searchers who do not have any knowledge about machine learning sci-
ence. The reliability of models is authenticated by a simple MATLAB 
code and an instruction for the implantation of the code. The developed 
models are compared with previous studies. Appropriate statistical 
measures were used to validate the model’s accuracy. 

2. Theory 

2.1. Least-squares version of the support vector machine model 

Support Vector Machine (SVM) which works relying on the theory of 
statistical learning is considered a precise methodology in ML [29]. Due 
to high flexibility and limited number of tuning variables, SVM has been 
deliberated for regression analysis [30]. 

2.2. Adaptive neuro-fuzzy inference system 

ANFIS is a constructing foundation for fuzzy inference system (FIS) 
which has irreplaceable and exceptional architecture. In this study, a 
particular adaptive network which is a primary architecture for FIS and 
the black-box model have been utilized to optimize and simulate the 
process. The input and output, preprocessor and database, fuzzifier, FIS, 
fuzzy system creator, defuzzification, and an ANN as the fuzzy system 
are the structural and fundamental elements of the developed model. 
Defuzzification is elaborated as a process to generate quantifiable results 
and acquire singular output from fuzzy set in fuzzy logic (FL). The 
learning algorithms of Sugeno fuzzy model have been employed and 
described in this section. Both FL and ANN form a fuzzy-neural network 
benefit from a five-layer architecture in the multi-layer network ANFIS 
structure. The simplicity of ANFIS architecture can be included as inputs 
x and y, and an output such as z. ‘If-then’ rules as a two-fuzzy rule 
embedded in a first-order Sugeno fuzzy model can be described as fol-
lows [31]: 

Rule 1: If x1 is A1 and x2 is B1 etc.; then f1 = p1x1 + q1x2 + … + r1; 
Rule 2: If x2 is A2 and x2 is B2 etc.; then f1 = p2x1 + q2x2 + … + r2; 

A five-layer feed forward network has been employed in the ANFIS 
structure. The functions utilized in each layer are represented in Eq. (1): 

Q1,i = μAi(m)i = 1, 2 (1) 

The layer functions of input and output as a membership function 
(MF) are defined in Eqs. (1) and (2), respectively: 

Q1,j = μBi(m)j = 1, 2 (2)  

where µ is the membership function. Layer 2 (rule nodes) can be defined 
based on Eq. (3): 

wi = μAi(m) μBi(m)j (3) 
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In layer 3 (normalized layer), the weight function can be normalized 
as in Eq. (4): 

wi =
wi

w1 + w2
, i = 1, 2 (4) 

Layer 4 (consequent nodes) are expressed as the defuzzy layer by Eq. 
(5): 

wifi = wi(mp1 + np1 + r1)i = 1, 2 (5) 

Layer 5 rules from the last layer: 

Q5 =
∑n

i=1
wifi (6) 

The parameter set is defined by (pi, qi, ri) and the output of layer is 
named by w I. 

2.3. Genetic programming approach 

In the GP method, the arrangement of the relationships (e.g. between 
dependent and independent parameters) has been postulated without 
any assumptions. An appropriate and firm relation, however, is estab-
lished for any data set that embody in each of the three different logical 
categories. The first one is for those logically-expressed data while the 
second category is allocated for mathematical formats as a normal 
mathematical statement. Moreover, the third category is for completely 
unidentified assembly of mathematical functions. The two constituents 
of the GP implementation include (i) a parse tree, as a set of basic op-
erators including “+, − , ×, ÷, log …” that are RNA role mimics, and (ii) 
the core constituents of the functions along with the function-related 
parameters. 

This system changes the generation of population to find well- 
performed solutions, and random population selection models are 
used to start the evolution process. The fitting values of each solution 
would be computed based on the dependent and independent variables. 
In ranking method, the selection of the models is performed according to 
the fitness values. 

Crossover and mutation are the key parameters which will result in 
the “Children” or “offspring”. Crossover operators are commonly 
applied to preserve correspondent properties among generations, while 
the mutation operator would be used to transfer the populations 
randomly in the parse tree. The procedure then reaches the final stage at 
the main generation and constantly reiterates up to its termination [32]. 
The function “log(X2) − tan (X − 8)” is depicted schematically in Fig. 1. 

Fig. 1. Schematic of the GP tree of log(X2)-tan(X-8). Copyright 2021, Repro-
duced with permission from [33] Elsevier Science ltd. 

Table 1 
The properties of heavy metal ions studied for their removal using biochar.  

Metal Electronegativity [35] Ionic radius (Å) [36] MW 

Cu2+ 1.9  0.72  63.5 
Zn2+ 1.65  0.74  65.38 
Pb2+ 2.33  1.2  207.2 
Cd2+ 1.69  0.97  112.4 
Ni2+ 1.91  0.69  58.7 
As3+ 2.18  0.58  74.9  

Fig. 2. Predicted vs experimental biosorption capability of biochar for heavy 
metals by a) LSSVM, b) PSO-ANFIS, c) ANFIS, and d) GP models. 
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3. Data collection 

The 353 sets of experimental data regarding the biosorption of metal 
ions including Zn2+, Cu2+, Pb2+, Ni2+, Cd2+ and As3+ on biochar were 
selected from previous study [34] and other publications and it details 
are available in Table S1 in Supplementary material. The raw data were 
randomly split into the training (282) and testing (71) datasets. Beyond 
that, lignocellulosic biomass as the main constituent of the 44 selected 
biochar has been produced at temperature ranging between 300 ◦C and 
700 ◦C. Sixteen important and influential factors were postulated to 
develop predictive models for estimating biochar adsorption capacity 
for heavy metals. These factors were grouped into four categories. The 
first one concerns the characteristics of biochar, such as biochar pH in 
water (pHH2O), biochar operating temperature in pyrolysis process (Tp), 
biochar surface area (SA, m2/g), ash content (ash, %), amount of total 
carbon in biochar (C, mass %), cation exchange capacity (CEC, cmol/ 
kg), particle size of biochar (PS, mm), and molar ratio to carbon (O/C, 
H/C, (O + N)/C). The second one is the biosorption condition such as the 
water temperature (T, oC), and pH of solution (pHsol). The third one 
relates to the initial concentration ratio of heavy metals over biochar 
(C0, mmol/g). The fourth one concerns the characteristics of heavy 
metal such as the electronegativity (χ), radius of ions (r, nm), and mo-
lecular weights (MW) which are presented in Table 1. 

4. Results and discussion 

4.1. Model development 

Several kinds of ML methods such as LSSVM, Hybrid-ANFIS, PSO- 
ANFIS and GP were employed to predict the biosorption of heavy metals 
by biochar. No explicit methods or formulas have been presented in the 
literature to predict the necessary MF number [37]. Hence, the MF 
numbers should be determined by trial-and-error. The most accurate 
predictions were obtained from Gaussian type MF [38,39]. The char-
acteristics of ANFIS (FCM) model with 18 rules was summarized in 
Table S2. The model training was set as 2000 epochs. An advanced 
ANFIS model coupled with a PSO algorithm [40] was expanded in this 
study to estimate the performance of heavy metal elimination using 
biochar. Having employed the PSO algorithm, the FCM type of ANFIS 
was trained followed by determining the optimal values of ANFIS pa-
rameters. Similarly, many parametric reports were used to define the 
optimal values of PSO parameters in order to support and enhance the 
PSO-ANFIS model development. Many studies applied the Gaussian type 
as MFs [41]. The details of PSO-ANFIS parameters were demonstrated in 
Table S3. The population size or number of individuals creating a pop-
ulation in each generation, number of generations to run, and maximum 
depth of trees were set at 1000, 300, and 7, respectively. Crossover and 
mutation have been chosen in this program. In the end, the superlative 
GP model after meeting the termination criterion was obtained: 

By using the CSA algorithm for optimization, the superlative values 
of LSSVM algorithm including γ (704.7) and σ2 (2.945156e + 04) were 
obtained using RBF kernel function. 

4.2. Testing and validation of the models 

In order to simply predict the data using the methods developed in 
this study, we developed a MATLAB code. The instruction for running 
this code is available in the Supplementary information. Statistical and 
graphical methods were used for the evaluation of developed ap-
proaches. The cross-plot of predicted results vs the measured values 
using the graphical methods was presented for all models including 
ANFIS, PSO-ANFIS, LSSVM and GP. Fig. 2 presents the predicted values 
of the models versus actual values concerning the removal of heavy 
metals using biochar. The modeling results display that the estimated 
values of predictors and actual results are in good agreement, based on 
the values of correlation coefficient (R2). 

The relative deviation of the output values from the experimentally 
determined values was calculated. As stated in Fig. 3, the results illus-
trated that the relative errors were very small for the modeling output 
from LSSVM, PSO-ANFIS and GP models. In comparison, relatively large 
errors were found for the output from ANFIS, mainly occurring when the 
low biosorption capacity was low. Therefore, LSSVM, PSO-ANFIS and 
GP models were recommended for further evaluation. 

To show the preciseness of presented models, statistical parameters 
were used. Eqs. (8)-(11) present the mathematical calculations of these 
parameters: 

R2 = 1 −
∑n

i=1 [xpredicted
i − xexperimental

i ]
2

∑n
i=1 [xpredicted

i − xm]
2 , xm =

∑n
i=1 xexperimental

i

n
(8)  

AARD =
1
n
∑n

i=1

⃒
⃒xpredicted

i − xexperimental
i

⃒
⃒

xexperimental
i

(9)  

MSE =
1
n
∑n

i=1
(xexperimental

i − xpredicted
i )

2
(10)  

Standard deviation (STD) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n

i=1
(
(xpredicted

i − xm)
2

n
)

√
√
√
√ (11) 

The statistical data of the testing, training and total data sets are 
summarized in Table 2. The values of R2 are all very high, which are 
equal to 0.9750 (GP), 0.9428 (ANFIS), 0.9712 (PSO-ANFIS) and 0.9832 
(LSSVM) models, for the total data sets. In comparison, ANFIS presented 
the lowest R2 values, especially for the test dataset (0.8796). The relative 
errors from modeling are very small, as shown by the MSE values, of 
which ANFIS generated the highest value (0.0069) compared to the 
other three models. This small margin of error indicates that the 
experimental data and estimations are in great agreement. In term of 
STD values, all four models presented very similar performance. On a 
positive note, ANFIS produced the lowest AARD value (0.21) among the 
four models. Overall, GP, PSO-ANFIS and LSSVM were demonstrated to 

be effective models for the heavy metal biosorption process. 
In order to better understand, the obtained results of this research 

were compared with the results of previous published articles, as 

Biosorption capacity (mmol/g) = 0.03178 sin(0.4795pH(sol) + 0.3738C0 − 0.4795H/C + sin(pH(sol) − T) − sin(8.709H/C) + 0.3738sin(pH(sol))

− 3.485) − 0.03178(sin(9.482sin(0.6186pH(sol))sin(pH(sol))) − pH(sol)sin(sin(sin(C0))))(0.3051pH(sol) + H/C

+ sin(0.6491pH(sol)) + sin(pH(sol)sin(0.6362pH(sol)))) + (1.125 × 10− 7)C0((Ash

+ sin(pH(sol))(C0 − 9.678))(0.4795pH(sol) + 0.4795 H/C − sin(9.478Ash)) + sin(sin(0.659pH(sol)))(SA − sin(pH(sol))(T

− pH(sol))))(CEC − 2C0)((T − Ash)(Ash − pH(sol) + 9.323) + C0(SA − 0.4795) − 0.4795Tp(C0 − 9.482)) + 0.05205
(7)   

A. Dashti et al.                                                                                                                                                                                                                                  



Separation and Purification Technology 312 (2023) 123399

5

presented in Table 3. According to Table 3, LSSVM model has a better R2 

than other models, which shows the high agreement between experi-
mental data and predicted data. In addition, the presented results of GP 
model are acceptable with high accuracy. Also, the obtained mathe-
matical model can unravel many works in this field and help researchers 
to choose better biochar materials. 

4.3. Sensitivity analysis 

The sensitivity analysis calculates the amount of variation in the 
output value in response to changes in the input value. The sensitivity 
analysis was used to investigate different aspects of the developed ML 
models. In order to obtain sensitivity analysis, the relevancy factor (r) 
for the biosorption of heavy metal ions on biochar was calculated by Eq. 
(12) [43]: 

r =
∑n

i=1(Xk,i − Xk)(Yi − Y)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(Xk,i − Xk)
2∑n

i=1(Yi − Y)
2

√ (12)  

where the average amount of output is displayed with ̋ Y˝ while ˝Yi˝ is 
the value of output number I, ˝Xk˝ is the average amount of input 
number k, ̋ Xk,i˝ is the value of input number and “n” is the count of data 
sets. 

The sensitivity analysis result can be obtained based on the experi-
mental data. The r values are obtained in the range of − 1 and +1. If r 
values are more than 0, it can be deduced the correspondent parameter 
has positive effect on the output of the process. If r values are less than 0, 
it can be deduced the correspondent parameter has negative effect on 
the output of the process. For example, in this study, the r value for 
particle size of biochar (PS, mm) is positive (0.448); hence, it can be 
concluded that by increasing the particle size of the biochar, the bio-
sorption of heavy metal ions on biochar is increased. Also, this value 
(0.448) is higher than the r value for biochar operating temperature in 
pyrolysis process (Tp) at0.0063. So, it can be deduced that PS has a 
higher impact than Tp on the biosorption of heavy metal ions on 
biochar. 

The comparative importance of several parameters regarding the 
heavy metal biosorption is presented in Fig. 4. The outcomes 

Fig. 3. Relative error deviation a) LSSVM, b) PSO-ANFIS, c) ANFIS, and d) 
GP models. 

Table 2 
Accuracies of various ML models used in this study.  

Parameter Dataset GP ANFIS PSO-ANFIS LSSVM 

R2 Train  0.9828  0.9633  0.9718  0.9969  
Test  0.9546  0.8796  0.9695  0.9400  
All  0.9750  0.9428  0.9712  0.9832 

MSE Train  0.0020  0.0042  0.0033  0.0004  
Test  0.0071  0.0173  0.0041  0.0087  
All  0.0030  0.0069  0.0034  0.0020 

STD Train  0.3368  0.3336  0.3366  0.3368  
Test  0.3871  0.3782  0.3510  0.3234  
All  0.3475  0.3432  0.3397  0.3343 

AARD Train  1.54  0.16  3.52  0.20  
Test  3.68  0.38  6.69  1.01  
All  1.97  0.21  4.15  0.36  

Table 3 
Comparison of performance between current models and previous models.  

Model R2 MSE Reference 

Kriging  0.980  0.0024 [42] 
KELM  0.919  0.00008 [42] 
ANN  0.948  0.0032 [34] 
RF  0.973  0.0062 [34] 
ANFIS  0.942  0.0069 This Work 
CSA-LSSVM  0.983  0.0020 This Work 
PSO-ANFIS  0.971  0.0034 This Work 
GP  0.975  0.0030 This Work  
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demonstrate that the biosorption of heavy metal ions on biochar is 
proportional to Tp (0.2 %), C0 (20 %), pHH2O (1.9 %), H/C (0.9 %), PS 
(11 %), CEC (7.5 %), pHsol (6.6 %), T (4 %), Ash (11.5 %), (O + N)/C (3 
%), r (0.9 %) and O/C (2.3 %). On the other hand, biosorption is 
inversely proportional to SA (− 3.1 %), MW (− 3%), C (− 14.4 %) and χ 
(− 9.5 %). Based on the analysis, the most and the least significant effects 
are attributed to the variables C0 and Tp with relevancy factors of 0.86 
and 0.02, respectively. Moreover, it is reported that the initial concen-
tration of heavy metals has a considerable effect on the biosorption 
performance [44]. This is likely due to the fact that when the concen-
tration of heavy metal ions is low, the biosorption of heavy metals 
mainly occurs on biochar surface. Since the core structure of the biochar 
and the heavy metal ions play important roles in their interactions, the 
biosorption capacity will increase with the increase in the heavy metal 
concentrations [45]. 

In addition, the comparative contributions of CEC can be attributed 
to the type of ions and nature of ion exchange process (e.g., Na+, K+, 
Mg2+ and Ca2+) as well as the surface functional groups (e.g. carboxyl, 
carbonyl, phenolic) on biochar [23,24]. The results are consistent with 
the CEC and pHH2O data. Furthermore, the way that oxygen-containing 
functional groups along with the aromatic structures in biochar affect its 
biosorption process can be defined by the molar ratios such as (O + N)/C 
and H/C [46]. 

By increasing pH in solution, functional groups on the surface of 
biochar release their protons, therefore, it is probable for biochar to 
generate more negative charges and hence to increase its biosorption 
capacity for heavy metal cations. Additionally, the alkaline solutions 
[47] could derive in the precipitation of heavy metal cations. Consid-
ering the effect of several parameters, it was concluded that total carbon 
indicated negative effect on biosorption process which could be asso-
ciated with the limited functional groups on the biochar surface. In case 
of electronegativity, no general trend was observed regarding its effect 
on the biosorption of heavy metals on biochar, similar to that reported 
by Park et al. [48]. 

5. Conclusions 

Water pollution with heavy metals is one of the most important 
environmental problems that affects the life and health of people by 
causing serious diseases. Therefore, it is necessary to control their 
presence in the environment. In this study, ML models of ANFIS, LSSVM, 
PSO-ANFIS, and GP were developed as valuable algorithms to effectively 
predict biochar elimination of heavy metal ions in water and waste-
water. Based on the comparison between the predicted and experi-
mental results, all four models presented satisfactory performance in 
simulating the biosorption of heavy metals by biochar. Presented results 
of this research, had better performance than other published papers. 
Using statistical analysis, it is concluded that the LSSVM, PSO-ANFIS 
and GP models showed better performance than ANFIS model, due to 
their high R2 values and low MSE values. The most influential variables 
are found to be initial metal/biochar concentration ratio and total car-
bon content in biochar. 
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